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RESUMO

O presente trabalho compreende um estudo tedrico acerca da ndo-linearidade geométrica
para aplicagdo em elementos de viga e de trelica. Analises numéricas de alguns
exemplos sdo mostradas como método de validar a teoria desenvolvida. Este relatério
tambem apresenta o estudo numérico realizado a respeito da modelagem de corpos
sOlidos através de estruturas compostas por barras de trelica, considerando grandes
deformagdes ¢ material elastico linear. Estas analises numéricas foram feitas em um
programa de elementos finitos comercial. Nas simulagdes foram utilizadas uma viga em
balango, uma viga bi-engastada ¢ uma placa engastada numa de suas arestas, todas
submetidas a uma carga concentrada. Inicialmente, para o estudo numérico, a 4rea da
se¢ao transversal dos elementos de trelica e a altura desta foram variadas a fim de obter
uma relago de pardmetros que fizesse com que o comportamento da trelica melhor se
aproximasse da resposta da viga. Posteriormente, cquagdes retiradas da literatura foram
utilizadas com o mesmo proposito de discretizagio de corpos sdlidos com estruturas

treligadas. Os resultados obtidos mostraram a validade deste tipo de modelagem.
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1 INTRODUCAO

Uma das abordagens para a andlise do comportamento elastico de uma estrutura
bascia-se na solugfio de equacdes diferenciais de equilibrio ¢ de relacdes cinematicas de
compatibilidade, independentes umas das outras, e¢ que sdo suplementadas pelas
condigdes de contorno e iniciais do problema em particular. A relagio causa-cfeito entre
0 campo cinematico (deformagdes) e de forgas (tensdes) depende do material e ¢

r . . . |
cxpressa atraveés de uma Jei constitutiva'.

Uma vez solucionadas as equacdes diferenciais, todos os trés requisitos -
cquilibrio, compatibilidade e lei constitutiva — siio atendidos. Em geral, problemas de
interesse na Engenharia sdo muito complexos e as equagdes ou sistemas de equagdes
diferenciais resultantes sdo de dificil solugdio analitica, o que motiva o emprego de
técnicas numéricas, onde destacam-se o0 Meétodo das Diferencas Finitas, o Método dos
Elementos de Contorno ¢ 0 Método dos Elementos Finitos (MEF)***,

O MEF apresenta algumas vantagens em relagido a outros métodos numericos,
tais como:

* Devido ao conceito de fungéio de forma, a aproximagido numérica pode ser

conhecida em qualquer ponto do dominio;

¢ Os sistemas matriciais obtidos sdo em geral simétricos e esparsos, o que torna

eficiente a sua solucio;

¢ A implementaciio, embora complexa, € genérica;

¢ Nio ha problemas em se aplicar 0 MEF em dominios irregulares,

principalmente com o uso de elementos isoparamétricos.

Os métodos numéricos associados 4 Mecinica dos Sélidos permitem a solugdo de
problemas referentes a estruturas carregadas estatica e dinamicamente, operando dois
tipos basicos de n#o-linearidade: ndo-linearidade geométrica da estrutura e nao-
linearidade fisica referente ao material. A nio-linearidade geométrica, que sera abordada
neste trabalho, provém do fato de que termos de ordem superior nas expressoes

cinematicas devam ser considerados para uma correta descrigdo das deformacdes em



uma estrutura >°. Devido 3 importincia da representagio do comportamento de metais
dicteis em um grande nimero de aplicagdes praticas, a formulagdo da teoria de grandes
deformagdes tem sido consideravelmente estudada®™ 7 ¥ 9, Alguns autores consideram
ainda, a n3o-linearidade fisica com modelos de plasticidade e dano'®.

Nio ¢ trivial a consideragio de deformagdes finitas em uma analise. Por
exemplo, a defini¢io de tensio o e deformagio & e suas respectivas taxas é mais
rigorosa, de modo que a relagéo tensdio-deformaciio deva ser invariante sob rotagio ou
translagéo de corpo rigido e as suas medidas devem ser conjugadas energeticamente'® "
12

Para caracterizar o material utiliza-se, neste trabalho, o modelo hiperelastico, ou
seja, as tensdes dependem das deformagdes ou alongamentos totais.

Além disso, relagdes nfo lineares entre deformaciio e deslocamento, £xu. e
tensdo e deformagio, oxe, geram mudangas na configuragio inicial da estrutura
(posi¢io, secdo transversal) o que torna complicada a implementagdo numérica.

Estruturas compostas de barras de treli¢as ou vigas tém sido aplicadas em grande
amplitude no mundo moderno, como em pontes, em coberturas ou, com a expansio da
telefonia celular, em torres de transmissio de sinal. Os elementos de trelica permitem
que assuntos complexos, como o caso de grandes deformagdes, sejam abordados de
maneira mais simples. Uma barra de vi ga € mais complexa, introduzem-se mais graus de
liberdade ao elemento, o que pode resultar num menor nimero de elementos a ser
utilizado na representacio de uma estrutura. Deste modo, este trabalho explora os

fenémenos no-lineares geométricos e de material que ocorrem em treligas e vigas,



2 APRESENTACAO DO MEF

Em um problema continuo de qualquer dimenso, o campo de varidveis (pressio,
temperatura, deslocamento, tensdo e outros) possui infinitos valores, pois ¢ fungdo de
cada ponto do corpo. Conseqiientemente, o problema possui infinito nimero de
incognitas.

O método dos elementos finitos consiste em aproximar a solugio do problema
por uma fungdo definida num subdominio resultante da discretizagio do dominio,
através da minimizagio do erro cometido. Esta discretizagdo forma entdo os chamados
clementos finitos cujas extremidades recebem 0 nome de nds, onde os elementos
adjacentes estiio conectados.

A solugdo completa passa, entdo, a compreender a adicdo das solugdes
aproximadas em cada elemento. E dentro deste, a solugdo aproximada ¢ dada em funcéo
dos valores em seus nds, através das fung¢des interpoladoras ou fun¢des de forma.

O método se inicia, portanto, com a discretizagdo, ou divisio em elementos
finitos, segnido pela formulacio do elemento, ou seja, escolha da fungdo de forma e
obtengdo da matriz de rigidez quando a formulacio é ndo-explicita. As equacdes em
fungdio das grandezas nodais sio escritas na forma matricial, individualizadas,
inicialmente, para cada elemento (matriz de rigidez ¢ vetores locais), seguida da matriz
global do sistema, obtida observando o indice dos valores nodais (graus de liberdade)
em cada elemento. Antes de o sistema ser resolvido deve-se aplicar as condicdes de
contorno e formar o vetor carregamento.

O sistema matricial deve ser resolvido utilizando métodos diretos ou iterativos
para solugio de sistemas lineares. A solugdo obtida (valores nodais) deve ser organizada
na forma de tabelas, plotagens de graficos bi e tridimensionais, curvas de contorno, etc.,

para poder ser interpretada.,



3 OBJETIVOS

Os objetivos do Trabalho de Formatura compreendem: um estudo numérico da
discretizacio de vigas e placas com elementos de treliga; um estudo tedrico da teoria de
ndo-linearidade geométrica, que engloba conceitos a respeito da cinematica ¢ de tensiio
aplicados a elementos de viga e de trelica.

A modelagem de vigas através de estruturas bidimensionais compostas por
treligas foi realizada considerando grandes deformagdes e comportamento elastico linear
do material, utilizando-se para isso, inicialmente de um método empirico e,
posteriormente, através de equagdes retiradas da literatura. A andlise das treligas foi
realizada em um programa de elementos finitos comercial, assim como a simulagiio da
viga, modelada com elementos de vi ga e da placa, modelada com elementos de casca,

A teoria formulada para os dois elementos citados foi averiguada com a andlise

de alguns exemplos numéricos, a partir de rotinas implementadas em linguagem Fortran.



4 TRELICA

4.1 CINEMATICA DE GRANDES DEFORMACOES

A maneira mais simples de se medir a mudanga de configuragiio de uma estrutura
unidimensional ¢ através do alongamento 2, que relaciona o comprimento final (Z,) e

inicial (L): A=L /L.

Considere, entretanto, que alguns materiais como polimeros podem variar
consideravelmente de comprimento quando tracionados, de modo que o alongamento A
atinja valores igual a 2 ou ainda maior. Para o caso de materiais estruturais como o ago,
o alongamento serd em torno de apenas 1.001 em tragiio e 0.999 em compressio no
escoamento. Portanto, a medida de alongamento A nfio é conveniente, uma vez que o

numero de interesse comega no quarto digito significativo.

Para evitar estes problemas, introduz-se o conceito de deformacdo, & A idéia

basica € que a medida de deformagdo tenda a zero na configuracio de referéneia (1=17) e

s . . L . P
coincida com a definigfio classica, &= ”L , quando a deformagdo ¢ de primeira

ordem.
Desta maneira, define-se deformagio como uma fungéo do alongamento:
e=f(2)

onde a funglio f pode ser escolhida convenientemente. Expandindo a equagio anterior

em série de Taylor em torno de um estado indeformado:

_ oA A
=f()+(A=1)+— (A1) e



considera-se f{/)=0, de modo que £=0 em A =1. Ademais, df /dA=1 em

A =1 de modo que, para pequenas deformagdes, todas as definigdes coincidem, quando

desprezados os termos de ordem superior.

Assume-se também que df /di.>1 para qualquer valor 2> ¢ de modo que a

deformaco aumenta monotonicamente com o alongamento. Portanto, para cada valor de

alongamento, corresponde um tnico valor de deformacio.

Finalmente, com essas restri¢gdes, muitas medidas de deformag3o sdo possiveis e
varias sio comumente usadas. Por exemplo, a usual defini¢io de deformagio chamada

de deformacédo de Engenharia ou deformagcdo de Biot, &, ¢ definida como:
Ep=A-1

Medidas alternativas, que podem simplificar a 4lgebra nos casos continuos, sio

as deformagoes de Green, &g € Almansi, ¢, definidas, respectivamente, como:

Uma medida diferente pode ser obtida com a adicio de varios pequenos
incrementos de deformacio que ocorrem na barra quando esta ¢ continuamente
deformada de seu comprimento inicial para um dado comprimento final. Este processo

de integragio leva & definicdo da deformacdo natural ou logaritmica, &y
g = 1[‘1(2,)

Alguns autores usam o termo familia de deformagdo para definir;



i(l’"—]) se m#0
m
n{1) se m=10

onde a Tabela 1 define as relagdes entre os valores de m e a classe de deformacgo.

TABELA 1: MEDIDAS DE DEFORMA cdo

Def;;maqﬁo = M_
Almansi | BN
Hiperblica 1
‘Lo;;;"itmica N 6- [
T
Green | 2

E facil demonstrar que para o caso de pequenas deformagdes, onde A =~ 7, todas

as medidas convergem para o mesmo resultado.

4.2 DEFINICAO DE TENSAQ

A escolha da medida de deformacio ¢ ligada a medida de tensio que sera
utilizada, e vice versa, uma vez que essas medidas devem ser comjugadas

. 12 - . . - . .
energeticamente. Hill ~ introduziu o conceito de tensfio e deformacgio conjugadas: uma
tensdo, o, € uma medida de deformacdo, &, quaisquer, sdo ditas conjugadas se o

trabatho externo real, W,,, puder ser obtido da expressio:

Weu = tr(og) = o.¢



Isto implica que uma vez escolhida uma medida de deformacdo, é necessario
eleger a tenséo conjugada apropriada, a qual pode ser obtida da equagiio acima. Deste

modo, pode-se escrever a tensdo conjugada & deformagdo apresentada anteriormente:

oy =F-g, =—
0

onde 03¢ a tensdo nominal, N é a forga normal e 4, é a area injcial da se¢do transversal,
Desta maneira, também sio definidas, respectivamente, primeira e segunda tensio de

Piola-Kirchhoff e a tensfio verdadeira:

N
o,=E ¢, :'/13_
N
o =Ege =‘2_‘
o, =E¢ =—N—

As tensdes acima sdo conjugadas, respectivamente, as deformacdes de Almansi,

Green e Logaritmica, com A, sendo a area atual da segdo transversal,

No desenvolvimento da analise linear de treligas, caracterizada pelo célculo do
equilibrio na posi¢do inicial, optou-se pela utilizagdo do par conjugado tensdo nominal
deformacdo de Biot. Para a implementagio nio-linear, serd utilizada a tensio verdadeira
e deformagdo logaritmica, com o equilibrio obtido na posicio deformada. Este par
conjugado ¢ interessante, pois a tensio verdadeira cxpressa a tensdo medida num

experimento onde a drea do espécime varia significativamente.

4.3 APLICACAO DO MEF



PRINCIPIO DOS TRABALHOS VIRTUAIS (PTV): Dado um deslocamento virtual op,
considera-se que 0 corpo estd em equilibrio se o somatdrio dos trabalhos de todas as

forgas (internas e externas) que agem no corpo forem iguais a zero.
Wi+ oW =0

Integrando este conceito para volume, area e cargas concentradas, tém-se:

[68-0-av = jop-f2av + [op- 1% as+Y o, R
I 8 5 i

onde 8 - o corresponde aos trabalhos virtuais internos e p-(rt+ P+R) corresponde
aos trabalhos virtuais externos devido as forcas de volume £ % de 4rea foeas forcas

aplicadas nos nos da estrutura discretizada R:.

4.3.1 Discretizacéo do PTV

Supondo um elemento de barra de trelica tridimensional, conforme Figura 1, o
qual ndo estd sujeito a forcas de volume e de area, apenas sofrendo carregamento em

seus nos, a equagio anterior pode ser simplificada para

[6e-0-av =3 &p, R,
[ i



8]

—

{'x__

FIGURA I ELEMENTO DE TRELICA TRIDIMENSIONAL.

Para o elemento em questdo, considera-se somente carga concentrada nos nds.
Definindo o vetor de deslocamentos dos nos, p = [u; v; w; us v w_a]T, o vetor de
deslocamentos virtuais dos nés, & = [du; Jv, ow; Sus dvy dws]" e o vetor de forcas
aplicadas nos nés F = [RiR:R;: Ry Rs Rg]T, 0 somatdrio pode ser substituido pelo produto

de matrizes ¢ o trabalho virtual externo passa a ser expresso por

5WE S Zé‘pl .R" - FT. @

O deslocamento axial do elemento de trelica, U, pode ser relacionado com o
vetor p, através de uma matriz de interpolagio H = Ax..z), que depende da geometria,

nimero de nds, graus de liberdade e requisitos de convergéncia. Assim tem-se que

U=H-p

10



A matriz H serd detalhada mais adiante. A deformagiio do elemento também
pode ser relacionada com o vetor p, utilizando-se da matriz B, que corresponde a

diferenciagio de H em relacio a #, coordenada na diregio axial, como segue

ES _a[_]—-g.,li. - &e=B8-
ar  or p &

A tensdo nominal € entfo escrita como
oc=E-B-p

E, finalmente, o trabalho interno pode ser expresso através do vetor de

deslocamentos dos nds

SWy=8p- [ (B'-E-B p)dr

ee

que, quando identificado com SW; anterior resulta no vetor forca

F={ (B"-E-Byar p
!

0 que permite definir a matriz de rigidez como

K=_|‘ (B" E-B)dr~
4
uma vez que
F=K-p

Resolvendo a equagdo acima, sfio satisfeitos os trés requisitos fundamentais da

mecénica;

11



* Equilibrio: expresso pelo PTV;
*  Compatibilidade: p é continuo ¢ satisfaz as condi¢gdes de contorno;
= Le1 constitutiva: através da qual a tensdo, o, é calculada.
Dessa maneira, fornecendo-se dados de geometria do corpo, carregamento
aplicado, condigdes de contorno e lei constitutiva obtém-se os deslocamentos nodais pie

os correspondentes estados de deformagio ¢ e tensdo ¢ dos elementos.

4.3.2 Resultante das forcas internas

Aplicando novamente o Principio dos Trabalhos Virtuais ao elemento de trelica,
reforcando as condi¢des de forgas de volume e de superficie nulas, tem-s¢ que o vetor

resultante das forgas internas do elemento sera dado por

Ft = j B cd”=4,-1, B o

e

ou
F"=N-1,-B"
onde N ¢é a forca normal que age no elemento, 4, e L,, area e comprimento

correntes do elemento, respectivamente. No caso de pequenas deformagdes (lincaridade

geometrica) L, ~ L e A, = 4.

4.3.3 Matriz de rigidez

A formula¢fo apresentada acima se aplica a condigdes tanto de linearidade como
de ndo-linearidade geométrica. No caso linear, a matriz de rigidez, que pode ser

encontrada através da equagio deduzida anteriormente, depende somente da geometria
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inicial e caracteristicas do material. J4 no caso de ndo-linearidade geométrica, o
equilibrio ¢ encontrado fora da posicio inicial, o que leva a utilizagdo de uma matriz
tangente de rigidez, que depende da configuragfio atual. Nesse caso, portanto, o
problema ¢ resolvido por método iterativo.

Com relagéio & ndo-linearidade fisica, para o clemento de treliga tridimensional
apresentado na Figura 1, optou-se por um material linear por partes, conforme ilustra a

Figura 2.

(]

P
>

FIGURA 2: MATERIAL LINEAR POR PARTES.

4.3.3.1 Linearidade geométrica

A matriz de interpolagfio ¢ encontrada através da dedugdo das fungdes de forma,
h;, para o elemento. Utilizando a Figura | e a varidvel independente & que varia de -1 a

1 a0 longo do elemento, pode-se escrever que

hy=—(-£+1)
E=1=h =0 2
=-1:,>/1_1=0
2 H3=l(~’5+1)
E=1=h=1 2

Colocando na forma matricial, tem-se

13



h:é[]—;’ 1+£]

Com a fungiio de forma definida, os valores de variaveis de um ponto pertencente
ao interior do elemento podem ser estabelecidos pelo conhecimento das mesmas

variaveis em seus nés, como segue

7

x=§[1—§ 1+§]-@]=§hm u-—g[f—a 1+¢]-[Zj=2h,.u,.

i=/

|

roglims () Th -t ndl( )

- =1

W} i 7
onde x, y e z s#io as coordenadas cartesianas e u, v e w os deslocamentos sofridos nas trés
dire¢des.

O deslocamento axial, U, pode entdo ser calculado por

X TVYo Wz,

U:
L

4 |
] I-& 0 0 i+t o0 9 7™
=‘2?[:; Yo 23] 0 =g 0 0 I+& 0 "
0 0 I1-& 0 o0  1+]|®
Vv,
W

ou
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onde, como definido anteriormente

o que implica na defini¢io da matriz de interpolagdo como
I-¢& ¢ 0 I+& 0 0

H=é[x3i Yo 23] 0 =& 0 0 I+5 0
0 0 I-& 0 0 1+

onde tem-se que
X2 T X=Xy, YT VooV Za T Iz

A partir da diferenciagio de H em relagiio 4 coordenada » ao longo do elemento,
pode-se encontrar a matriz B que relaciona a deformag@io do elemento com os

deslocamentos dos seus nos (& = Bp):

Da Figura 1, observa-se que & varia linearmente com
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=i =1

oc

or

B~ b

€ como

ar 2L 2 Va2 21 24 Yoru

tem-se que

= _[. X3, —Va¢ Z2} A2y 2f 2.’!] =

onde defini-se

bxp=| "

Y

L Za ]

Pode-se, agora, calcular a matriz de rigidez K, com segue

K=j B'-E-Bav'=E-4-1-B" B =
[



r_ Xy

_},:I
I |-z
= EAF X ‘[—x” Vo TZy Xy Yo Z-’f]:
2
Yo

i )
= EAzj g b(x) ‘b1(X),

onde a drea 4 do elemento é constante para a anélise linear.

4.3.3.2 Nio-Linearidade geométrica

Quando da consideragdo da n#o-linearidade geomeétrica, o equilibrio expresso
pelo principio dos trabalhos virtuais sé pode ser alcancado através de métodos de
aproximag#o. Surge, entdo, o termo vetor de forcas desbalanceadas, g, que corresponde a
diferenca entre o vetor de forgas externas aplicadas € o vetor de forcas internas, g = F&

- F™_ A matriz tangente de rigidez ¢ entdo definida como

17



uma vez que as forgas externas sdo constantes durante o deslocamento que provocam. A

matriz B aqui ¢ diferente da encontrada anteriormente pois a medida de deformagio a

ser utilizada no caso no-linear € a logaritmica (& = In(L,/L)). Assim uma nova matriz B

deve ser deduzida, como segue.

Foi anteriormente mostrado que

E=B-p

Diferenciando a equacio acima obtém-se

Para diferenciar o comprimento atual, Z,, em relagio a P. € necessario obter a

expressdo que os relaciona. Pela Figura 1 pode-se observar que o comprimento atual do

¢lemento ¢ dado por

Ln® = [0z =30y (atz = )+ [z - p0) + (va - )P+ [(22- 20) + ( ws - w)]?

Definindo os vetores

o comprimento do elemento pode ser escrito como

|_x1
i
Xa Uy
Zl
X = X21 = | Yy P2 = vy
X,
i Zy W
Y -
L2 |
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L = (% +p) . (e + par)

ou ainda

e [ T T T
Ly =X X0 + X1 . put pa cxp + pa . py

Cada termo da expressio acima pode ser reescrito, como segue

T 2 2 1 _ 2 2 2 2 2
¢ Xn Xy T oxTtynt o = A -2ty -2 eyt
312 22z =

= x-r_x 2'(x2-x| +yz'y1+22'21) B i
[0 0 0-1 0 0] [x

.
=X Xt 0oy v oz n]- - £

-1.0 0 0 0 0| |x,
0 -1 0 0 0 0| |y,
0 0-1 0 0 0} |z
(7 0 0-1 0 0] [x]
0 1 0 0-1 0| |y
=[x »1 21 x» » z]- 0]00_1-21 =x'-4-x
-10 0 1 0 0] |x
0 -1 0 0 I 0 |y
(0 0~-1 0 0 1] |z
onde defini-se
70 0 -1 0 0
¢ 10 0-1 0
A=00100—1
-10 0 1 0 0
0 -1 0 0 [ ¢
0 0-10 0 I

4 P2!T' P = pT'A' P (analogamente).
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U,

o xa'py =[xy Yo za)c v, = X217 (2 = wn) Yo (V2 Vi) 20 (wa —wy)
Wy,
-
Y
) Wil _ wsir
=[x v -z x y za]- N = b(x)p
V,
W2
—1 0 0]
0 -1 0
27 Xy
" T 0 0 -7 T
* P2 cx2 = [uy vy W] - Y| = P Y| = p - bx)
! g 0
=2 0 ] 0 “nr
0 0 1|

E conveniente mostrar que bT(x) = x4 ou b(x) =4 -x

-1 0 0 I 0 0
bT(x):[le Yo zn]-| 0 =1 0 o0 1 0| =
0 0 -1 0 0 I
(-1 0 0]
0 -1 0
b D= -1 0 0 1 0 0
= x- i 0 -1 0 0 1 0| = x4
I 00
0 0 -1 0 0 |
0 1 0
0 0 1]

Expandidos os termos, o comprimento do elemento de trelica pode ser escrito

COomo segue
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Li=x"A-x+pd-p+ 8" p+p b

ou

Li=x"-4-x +pT-A-p + xT-A-p +p'A4-x

ou ainda

Ll=(x +p"-4 (x + p)

) N . -1 éL, - .
Voltando 4 equagio da matriz B, B" = L—E'—’ , € necessario diferenciar L, em
M P

relagdo a p. Escrevendo novamente a equago, tem-se que
L2 =xT-A-x +pT-A p + x4 ‘p+pA-x

[

Diferenciando cada membro separadamente, obtem-se

ol oL oL oL
s T = Tr T _ g iy el
op aL, op ap

ﬂxr-A-x) -0
p
L] xr.A.p =(X2 *)C])‘(Mg u|)+(yz yi)'(VZ V1)+(Zz- Zl)‘(Wz—Wl)
[=x, +x, ]
_};2+}31
T. 4. -z, +
o(xT-A-p) R
op Xy =X
Yo=Y

ez,

. p[-A'p = u22+u|2 2-u2-u1+vz2+v12—2-1!2-v1+w22+w12 2 wowy
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[2-u, - 2-u, ]
2-v,=2-v,
6(pT.A.p) 2-w —-2-w, - 2-Ap
cp 2-u,—2u,
2., =2y,
2-w, = 2w |
o pAx = plb = —uyxy Vitya = Witzn ot cxn vty o+ own -
Z3 = xT A'p
.
- A
- Ao Ax)
op

Substituindo-se os termos, a equagio se torna
2néL, = (b(x) + b(x) + 2 -4 -p)op

> = 2w A = At p) =

1
ap 2LH Lﬂ L}‘l

onde x’ € o vetor de coordenadas atualizadas.
Encontrada a derivada do comprimento do elemento em relacdo ao vetor de

deslocamento dos nés, ela pode ser substituida na expressdo para o calculo da matriz B,

que se torna

ou
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Bl = A-(x+ p)
(x+p)' - A-(x+p)

A resultante das forgas internas, que anteriormente foi expressa em fungio de B,
pode agora ser reescrita como segue

= A A-x" = o4, —L—Al-A-x’
;1 L.’i L
; A
F" = o- 0.3t 4.y
L
ou
F'o= oM peai g
L
pois

An — L_n o =Z—2v
4, \L

Por fim, a matriz B pode ser substituida na expressdo da matriz tangente de
rigidez, que, como deduzido anteriormente, é igual a
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T ap
Ky K7 Ko
——— - — - - =5 -~
r —{1+2v)
_ag .141'_.7\_] Ax' + A ai.ﬂ.o-.)h" + oA —-ﬂ-a-A-x’
ap ) L ap ) L ap L

Definindo

Cx’) = A-x’

¢ derivando cada termo separadamente, obtem-se

9a ) _ g9 _ —!,—-C(x')-E
op o L
ox' N
—J = I (matriz identidade)
ap

oL
o4\ _ 1 2L, :ﬁI—-C(x‘)
op L &p L-L,

Substituindo nas matrizes, tem-se

A L1 -
Ky, =—" A, % —— 2" E.C(x")-C(x'}
ri AU f L:! L.? ( ) ( )
A
K, G A”_U. =
L

E . }U—(}t’v} . A

L:I

o

-C(x")-C(x"Y
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- —(]+2V)‘1_U+:"') 'E—L::I—O‘C(JC‘)'C(X')!

onde tem-se K7y dependendo s6 da geometria, Ky € Ky,> dependendo da geometria e
das tensdes.

Finalmente, a matriz de rigidez tangente pode entdo ser escrita como

K, = ? AT (B -1+ 2v)-9)-C(x') - C(x')’ +i4f'o-/1-”*-*v> A

44 IMPLEMENTACAO NUMERICA

Um programa foi desenvolvido em linguagem FORTRAN, sendo dividido de
forma sistemdtica em sub-rotinas para facilitar seu entendimento e implementacio.
Como forma de carregamento na estrutura treligada, o programa estd capacitado a aceitar
tanto for¢a como deslocamento aplicado, seja para trelicas bi ou tridimensionais,
podendo considerar ndo-linearidade geométrica e linearidade fisica por trechos.

A seqii€ncia de execugdio dos comandos dentro do programa pode ser dividida
em quatro grandes partes, Figura 3. A primeira ¢tapa cortesponde a leitura dos
parametros do arquivo de entrada, Em seguida, as varidveis que nio tiveram seus valores
lidos do arquivo de entrada sio entdio inicializadas ou com valores nulos, ou com valores
calculados, como € o caso da matriz de rigidez ¢ das forgas internas. Na terceira etapa,
responsavel pela solu¢io do problema, os incrementos de forgas e/ou deslocamentos sio
aplicados € as tensdes e deformagdes obtidas. Por fim, uma terceira funcio destina-se a

plotagem da configuragio inicial e deformada da trelica.
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Leitura do Arquivo de Entrada

A 4

InicializagGes

A

Aplicagio de Incrementos

h 4

Desenho da configuracio

deformada

FIGURA 3: ORGANOGRAMA REPRESENTATIVO DAS ETAPAS DE EXECUCAO DO PROGRAMA,

A etapa de aplicagdo dos incrementos pode ser expandida com o intuito de um
melhor entendimento do modo de resolugdo implementado no programa, Figura 4. Nesta
ctapa, os vetores de carregamento sdo atualizados, sdo calculadas a matriz tangente de
rigidez, as tensdes e deformacdes dos elementos, as forgas internas ¢ a diferenga entre
cstas e as forgas aplicadas, ou seja, as forcas desbalanceadas, ¢ sfo processadas as

- ~ : [ ~ A . . . *
iteragdes até que o critério de convergéncia seja satisfeito |

*® . . ’ . - . ~
No caso de linearidade geométrica, s6 ocorre uma iteragfo.
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o
%
A

A

Atualizag8o dos vetores de

carregamento

h 4

Calculo da matriz de rigidez, das
tensdes, deformagdes e forcas

internas e desbalanceadas

r

Iterac¢Ges

FIGURA 4! ORGANOGRAMA REPRESENTATIVO DA ETAPA DE APLIC'A (AOQ DE INCREMENTOS.

A etapa de processamento de iteragSes, importante na andlise com nao-
linearidade geométrica compreende alguns passos, que comegam com a inversio da
matriz de rigidez, seguida pelo célculo dos deslocamentos sofridos e atualizagdo das
coordenadas dos nds. Posteriormente sio calculadas, novamente, a matriz tangente de
rigidez, as tensbes, deformagdes, forgas internas e desbalanceadas. Por fim, é feito o

leste de convergéncia para verificar se o residuo & menor que um valor determinado
(Figura 5).
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y

Inversdo da matriz de rigidez

y

Calculo dos deslocamentos e

atualizagfo das coordenadas

h 4

Calculo da matriz de rigidez, das
tensdes, deformagdes e forgas

internas e desbalanceadas

Teste de convergéncia

FIGURA 5: ORGANOGRAMA REPRESENTATIVO DOS PASSOS EXECT ITADOS NA ETAPA4 DE
PROCESSAMENTO DAS ITERACOES.

4.4.1 Arquivo de entrada

Os dados de entrada sdo inseridos na forma de arquivos, com extensio INP, num
formato adequado, como pode ser visto nos arquivos apresentados no Apéndice C,
correspondentes aos exemplos a serem mostrados neste relatério. Um unico dado ¢
inserido diretamente do teclado, que corresponde ao nome do arquivo de entrada.

No arquivo de entrada, o usuario primeiramente digita o nome do elemento
(truss3d ou truss2d) e o tipo de analise (linearidade e nfo-linearidade geométrica), o
nimero de nés, de elementos, de nés vinculados, de nds carregados € o nimero de

incrementos de carga. Posteriormente sfio digitadas as coordenadas dos nés e a
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incidéncia das barras, ou seja, os respectivos nos dos elementos, assim como as
propriedades dos mesmos. Dentro destas propriedades podem ser fornecidos mais de um
ponto da curva tensfio-deformacdo, caso deseja-se considerar o material com
comportamento linear por partes. Por fim, sdo especificados as vinculagdes e os
carregamentos.

Tendo em vista facilitar a criagdo do arquivo de entrada, foi criada uma geragiio
automatica de nds e elementos, para ser utilizada em trelicas que apresentam repetigdes
destes. Por exemplo, na trelica da Figura 6, percebe-se que os elementos de 2 a 4
possuem seus ns ambos incrementados de 2 em relagdo aos nés do elemento anterior.
Assim, o usuario digita apenas o elemento inicial, o final, € o incremento de cada né ¢ o
programa gera os intermedidrios. Do mesmo modo ocorre para os nés e suas
coordenadas. Se as barras horizontais da trelica da Figura 6 forem iguais, o usuario
apenas digita as coordenadas do né 1 e do né 7 e o incremento destas a cada no.

A implementagio dessa geragio automatica, apresentada nos Quadros 1 e 2 do
Apéndice A, € 1til no caso de trelicas com um grande nimero de elementos, pois
diminui o tempo de criagio do arquivo de entrada, o qual representa um alto percentual
do tempo total despendido pelo usuario na analise de um problema. Para facilitar o
entendimento das rotinas, uma lista de varidveis e seus significados é apresentada no
Apéndice B.

O RN OGRANOANO

1 3 5 7
+ +7 -

FIGURA 6: EXEMPLO DE TRELICA COM NOS E ELEMENTOS GERADOS AUTOMATICAMENTE.
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4.4.2 Matriz de rigidez

4.4.2.1 Linearidade geométrica

A implementacdo do calculo da matriz de rigidez para o caso de linearidade
geomeétrica ¢ apresentada no Quadro 3 (Apéndice A). Nele, percebe-se que hé separacio

da matriz em duas partes:

i
e umaconsiante: cle=F-A4- L—S-

* outra que varia com a posi¢io dos nés: b(x) - b'(x)

4.4.2.2 NHo-linearidade geométrica

O caleulo da matriz de rigidez tangente também & feito em partes, as quais

compreendem:
Aﬂ }L—(3+JV) (E ] 2 )
. = AE-(I+2v)-0

o C)-CEN'

- ‘Jq_a.c_l—(1+3v) A
L

4.4.3 Método de Newton-Raphson

Quando considerada a nio-linearidade geométrica, com o equilibrio da estrutura
a ser estabelecido na configuragdo deformada, necessita-se de um método iterativo para
0 estabelecimento deste equilibrio. Isto se deve ao fato de que o cdlculo do deslocamento
sofrido pela estrutura depende do calculo da matriz de rigidez tangente que por sua vez

depende do deslocamento. O método escolhido foi a conhecida técnica iterativa de
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Newton Raphson que utiliza a matriz de rigidez tangente da iteragfio anterior para
calcular a nova configuracio da estrutura.

O equilibrio de forcas, como mostrado anteriormente, ¢ dado por
g= Fex! _ Fim‘

O procedimento iterativo de Newton Raphson ¢ obtido de uma expansdo de

Taylor truncada
d 1 d’gy o
& = got _gpo‘-csp+ [__._d_g;()_(ap)ZJ (a)

onde termos como dg, / dp significam dg / dp computado na posicio ‘0’. Dada uma
estimativa inicial p; para a qual gops) # 0, a melhor aproximacio é obtida
negligenciando termos de alta ordem em parénteses e fazendo g, = 0. Como resultado

obtem-se (Figura 7)

-1
d
Py = _(—gp"] - &o(po)  (b)
dp
€ a nova estimativa para p é
Pi=pot dpy
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4 dw,
Load, W I dw, ; /
-‘I —— —_— )
— O
- 99
=
—do I dw
I
k=t |
dw
I
|
, I
| J
i I >
W L Displacement, w

FIGURA 7: METODO DE NEWTON-RAPHSON. O DESLOCAMENTO W (CARREGAMENTO W) DA
FIGURA CORRESPONDE A p (F) DA FORMULACAQ APRESENTADA.

A substituicdo de (b) em (a) com os termos truncados inclusos mostra que g, é

. ? . . . . “ = .
proporcional a gy°. Isto implica que o processo iterativo possui  “convergéncia
quadratica”.

O processo iterativo segue com

do )7
;= —(}%-] - gilpr)

Assim, no programa, o método é aplicado tmplicitamente a medida que,
utilizando a matriz tangente da iteragio 7, calcula-se o deslocamento correspondente a
iteragdo i+/, no caso de forcas aplicadas. O controle da carga ¢ realizado pelo usuario,
que define no arquivo de entrada o niimero de incrementos a serem utilizados. Dentro de
um incremento, as iteragdes prosseguem ate ser alcancado um valor de convergéncia
satisfatério, a ser visto mais adiante. O Quadro 4 apresenta as linhas de codigo que

representam o loop dos incrementos de carga ¢ das iteragdes.
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4.4.4 Sistema linear

O sistema linear, F = Kp, é resolvido no programa atraveés da inversio da matriz

K,
p=K'F,

utilizando uma subrotina exiraida de Wang'?, que utiliza o método de inversio de Gauss

Jordan (Quadro 5 - Apéndice A).

4.4.5 Condicdes de contorno

A aplicagio das condigBes de contorno dos elementos (Quadro 6 - Apéndice A)
segue a teoria do método dos elementos finitos e & feita no sistema linear através da
realizagfo das seguintes etapas na matriz de rigidez:

* zera-se a linha e a coluna correspondente ao grau vinculado:

* coloca-se 0 numero | na posicio da diagonal principal referente ao grau vinculado.

4.4.6 Linearidade fisica por partes

A linearidade fisica por partes significa que a curva tensio-deformacdo do
material € composta por trechos lineares, como dito anteriormente (Figura 2). No
programa, apos cada incremento de carga, as deformacdes dos elementos sio calculadas
¢ comparadas com os da curva inserida no arquivo de entrada e, se necessario, o maédulo

de elasticidade ¢ atualizado da seguinte maneira, como mostra o Quadro 7 (Apéndice A)
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onde o+ € &;1 representam o proximo ponto na curva tensio deformagfo. Se o valor de
& calculado for maior que £;.), a atualizagfio é feita com o préximo ponto cujo & seja

Maior qUE £i(&is2 ,&i43 , ...).

4.4.7 Balancgo de forgas

Tendo calculado as deformagdes usando o médulo de rigidez apropriado, o
programa calcula as tensdes dos elementos, as forcas internas locais e globais e o vetor
de forgas desbalanceadas (Quadro 8), ou seja, a diferenca entre as forgas internas e
externas ao elemento. Através destas forgas desbalanceadas tem-se um metodo de

avaliagdo da distdncia entre a situagdo real da estrutura e o equilibrio da mesma.

4.4.8 Teste de convergéncia

Ap6s cada iteragfio, € realizado um teste para avaliar se o processo iterativo esta
convergindo e/ou se o equilibrio da estrutura foi alcancado para o incremento de carga
correspondente. Dois métodos para avaliar a convergéncia foram implementados: um
levando em conta os deslocamentos sofridos e outro as forgas desbalanceadas.

O primeiro critério, retirado de Owen e Hinton' (Quadro 9), estabelece a

convergeéncia se

raziio = \/ soma dos quadrados dos deslocamentos sofridos na iteracdo <107

soma dos quadrados dos deslocamentos sofridos no incremento

onde a “soma” se refere 4 soma dos valores dos nos.

O segundo critério (Quadro 10) relaciona-se diretamente as forcas

desbalanceadas ¢ aponta convergéncia quando
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nos

Z( Jorcas desbalanceadas)”
razdo = <107

HOS nos

> (for¢as aplicadas)’ + > (reagdes vinculares)’

4.4.9 Arquivos de saida

Apos cada incremento de carga, o programa dispde de valores das grandezas do
elemento: tensdo, deformagio, forca, deslocamento, posi¢fo, etc.. Dependendo do
objetivo da anélise, essas grandezas sdo gravadas aos pares em arquivos de saida para
realizagio posterior de gréficos.

Apesar do programa nio plotar dirctamente a maioria das grandezas calculadas,
ele permite que seja desenhada a configuragfo inicial ¢ deformada da estrutura. Isto
possibilita uma grande facilidade na detecgio de erros grossciros, gerados, por exemplo,
na criagdo do arquivo de entrada, além de apresentar uma resposta mais intuitiva para o
usudrio do comportamento da estrutura.

A rotina que permite a criacio destas imagens, desenvolvida com fungdes
graficas da biblioteca do proprio FORTRAN, ¢ apresentada no Quadro 11. A
configura¢do inicial da estrutura é desenhada em tracejado e os elementos de trelica na
configuragdo deformada recebem uma cor de acordo com a tens#o relativa a que estdo
submetidos. Um total de até nove cores forma o gradiente que discretiza as tensdes,
variando do azul, passando pelo verde até o vermelho, numa escala crescente de tensdo

nesta ordem,

4.5 ANALISE DE EXEMPLOS

Finalizada a construgio do programa, partiu-se para a execucio de alguns testes e

exemplos que se mostraram interessantes para verificar a performance do programa.
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Inicialmente, foram testados exemplos com trelicas simples, os quais pudessem,
facilmente, apontar eventuais erros na implementagio. Em seguida, uma avaliagdo mais
detathada foi realizada com treligas mais complexas. Por fim, alguns dos exemplos
foram executados no programa de elementos finitos ABAQUS e no programa
desenvolvido para verificar a acuracidade deste.

Nos exemplos executados procurou-se utilizar todos 0s recursos que o programa
dispde, como geragio automatica, carregamento por forga ¢ por deslocamento aplicado,
fazendo uso tanto da linearidade fisica quanto da fisica por partes como também da
linearidade e ndo-linearidade geométrica.

Como dito anteriormente, todos os arquivos de entrada sio integralmente listados

neste relatorio em forma de Quadros que se encontram agrupados no Apéndice C.

4.5.1 Exemplo 1

O primeiro exemplo, listado no Quadro 12, trata de uma treliga bidimensional
formada por duas barras simétricas de 5cm de comprimento e 0, 5¢m” de 4rea transversal,
articuladas em uma das extremidades e unidas pela outra extremidade, a qual ¢

submetida a um deslocamento de / Ocm, Figura 8.

4= -[0cm

(0.0.0)

FIGURA 8: TRELICA TESTADA NO EXEMPLO 1. COORDENADAS EM CENTRIMETROS,
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Considerando linearidade geométrica e linearidade fisica, com mddulo de
elasticidade igual a 2/0MPa, coeficiente de Poisson igual a 0,5, o exemplo foi
processado com a utilizagdo de 50 incrementos de carga. A curva da Figura 9 apresenta
a soma das reagdes verticais dos nés 1 e 3 (que em médulo deve ser igual a carga

aplicada para haver equilibro) em fungio do deslocamento sofrido pela jungio.

16000.00 —
/
12000.00 —{ //
/
0
= |
z /
L. 8000.00
|
|
4000.00 1
o
0.00 ‘M T T T T "|
0.00 2.00 4.00 6.00 8.00 10.00

Deslocamento do nd 2 (cm)

FIGURA 9: RESPOSTA LINEAR DO PROGRAMA - CARG A APLICADA EM FUNCAO DO
DESLOCAMENTO DO NO 2.

Analisando a curva da Figura 9, conclui-se que o programa apresentou uma

resposta linear, como se esperava. A configuragio deformada da estrutura & apresentada

na Figura 10.
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FIGURA 10: CONFIUGURACAO INICIAL E DEFORMADA DA ESTRUTURA.
Executando novamente o exemplo, com os mesmos parametros, porém agora

numa analise que considera nfio-linearidade geometrica, obtém-se uma resposta que

difere da anterior, como é observado na curva apresentada na Figura 11.
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FIGURA 11: RESPOSTA NAO-LINEAR DO PROGRAMA - CARGA APLICADA EM FUNCAO DO
DESLOCAMENTO DO NO 2.

Comparando as respostas das curvas das Figuras 9 e 11, pode-se perceber que ha
realmente grandes diferencas entre as duas. Isto acontece porque, no caso da Figura 9, o
equilibrio foi calculado sempre na configuracio inicial, isto &, considerando linearidade
geométrica. Como o no 2 sofre grandes deslocamentos, esse calculo nio é mais valido,
levando a um resultado errado. A Figura 11 mostra a curva for¢a versus deslocamento
quando a nfo-linearidade é considerada. O calculo linear geométrico s6 ¢ valido para
pequenas deformagdes e pequenos deslocamentos.

Devido a simplicidade do exemplo, bidimensional com apenas duas barras, ¢
com o objetivo de comparar a solugfio numérica ndo-linear, desenvolveu-se uma solugdo
analitica para o exemplo.

Para iniciar o desenvolvimento analitico, observa-se que a simetria da treliga faz

com que as reagbes verticais no nd 1 e né 3 sejam iguais entre si e para haver equilibrio,
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a soma destas ¢ igual a carga aplicada. Assim, de modo a facilitar a analise, divide-se a

estrutura em duas partes e analisa-se apenas uma delas, como mostra a Figura 12.

Fr2

L 4,
h-qg

A
b

Fi2

FIGURA 12: SOLUCAO ANALITICA DA TRELICA.

Tem-se da Figura 12 que
=p 4 i
Ln-? = bg + (h'Q)g

Considerando volume constante, 4,/ = AuL, ou v =% (coeficiente de Poisson),

pelo equilibrio de forgas tem-se que

od, send = £
2
= Fe EGAafsene

"

Mas
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h—g

3

sen@ =

do que resulta em

_ 264,L(h—q)
o ’

H

F

Considerando o par tensio verdadeira - deformagdo logaritma, que é o utilizado

no programa quando a néo-linearidade geométrica ¢ descjada, chega-se a

Fi= 2-E~A0-L-ln(m} (h—q)

L b +(h—q)

Aplicando os mesmos valores da solugdo numérica e plotando-se -F em fungiio

de v, chega-se a resposta ndo-linear da estrutura, apresentada na Figura 13,
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FIGURA 13: RESPOSTA ANALITICA (LINHA CONTINUA ) E NUMERIC4 (PONTOS) NAO-LINEAR DA
TRELICA DO EXEMPLO 1.

Observando as curvas da Figura 13, percebe-se que nfio ha, praticamente,
nenhuma diferenga entre a curva plotada em linha continua, representando a resposta
analitica, e aquela que se formaria da unidio dos pontos que representam a resposta nio-
linear obtida pelo programa. Isto faz com que se creia que o programa esta funcionando

corretamente, pelo menos a respeito das fungdes que sio abordadas no exemplo.

4.56.2 Exemplo 2

O Exemplo 2, apresentado no Quadro 13, trata de uma trelica tridimensional,
com quatro nos e trés elementos, os quais apresentam 4rea transversal igual a 0,5cm”. A
estrutura € submetida a uma forga concentrada no né 4 de 30KN, que atua tracionando

todas as barras (Figura 14).
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FIGURA 14: TRELICA TRIDIMENSIONAL TESTADA NO EXEMPLO 2. COORDENADAS EM
CENTRIMETROS.

As barras s@io feitas de acgo, possuem o mesmo comprimento de 7,07¢m, com
cocticiente de Poisson igual a 0,33 e modulos de elasticidade dados pela Figura 15. O

exemplo foi testado utilizando 100 incrementos de carga, ndo-linearidade geométrica e

linearidade fisica por partes.

o)
(MPa)
250 E.=10GPa
£;=210GPa
/ £
0,12% g

FIGURA 15: PROPRIEDADE DO MATERIAL DO EXEMPLO 2.
O resultado da simulagio pode ser visto na Figura 16, onde, no ¢ixo das

abscissas, encontra-se a soma das reacdes verticais (diregdo z) que deve ser igual a carga

aplicada, e no eixo das ordenadas & representado o deslocamento do né 4.

43



30000.00 e

o
/
20000.00
z
[«
|
10000.00
v
!
0.00 ][ T T I T T 1T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Deslocamento do né 4 (mm)

FIGURA 16: SOMA DAS REACOES VERTICAIS VERSUS DESLOCAMENTO SOFRIDO PARA TRELICA
TRIDIMENSIONAL DO EXEMPO 2.

E interessante observar na curva da Figura 16 a mudanga da rigidez da estrutura
de maneira condizente com o que foi definido para 0 material no arquivo de entrada, o
que aponta para uma correta implementacio da linearidade fisica por trechos. Isto pode
ser confirmado pela Figura 17, onde a curva tensio deformagio do elemento 2 tem seu
ponto de descontinuidade em 250Mpa, como esperado. Do mesmo modo que no

exemplo 1, as curvas se comportam do modo previsto, formadas por trechos lineares.
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Deformagiio do elemento 2 ~
FIGURA 17: DIAGRAMA TENSAO VERSUS DEFORMA CAO DO ELEMENTO 2,

Numa andlise um pouco mais profunda, pode-se comparar os valores de
determinadas varidveis com os valores obtidos de um programa de elementos finitos
conceituado. Desta maneira, a simulagfio deste exemplo tridimensional foi realizada no

programa comercial ABAQUS e a curva correspondente é apresentada na Figura 18.
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FIGURA 18 TENSAO NA BARRA 2 DA TRELICA TRIDIMENSIONAL DO EXEMPLO 2. EM LINHA
CONTINUA, A RESPOSTA DO PROGRAMA, EM PONTILHADQ, A RESPOSTA OBTIDA PELO ABAQUS.

Através da Figura 18, pode-se afirmar que o programa desenvolvido funciona
corretamente, viso que a curva obtida por este & praticamente coincidente com a obtida
pelo programa Abaqus. A fim de avaliar relativamente os valores de tensio nos
elementos, outras curvas foram plotadas, com valores de o na ordenada e o nimero de

incrementos na abscissa, para todas as barras da trelica (Figura 19),
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FIGURA 19: TENSAO NAS BARRAS D4 TRELICA TRIDIMENSIONAL DO EXEMPLO 2. EM LINHA
CONTINUA, BARRAS 1 E 3, EM TRA CEJADO, BARRA 2,

Na Figura 19, observa-se que as tensdes se mosiram positivas, como esperado.
Porém o que se destaca ¢ a diferenca entre as tensdes das barras 1 e 3 com a 2. Esta
diferenca estd correta devido a disposicio relativa das barras, as quais nio estio
espacadas dos mesmos dngulos. As barras 1 e 3 estio mais proximas e devido a simetria
apresentam a mesma tensfio que é menor que a da barra 2, que esta mais isolada e tende

a ser mais solicitada.

4.5.3 Exemplo 3

O terceiro teste realizado (Quadro 14) compreende a simulagiio de uma estrutura
trelicada bidimensional que aparenta uma viga com uma extremidade livre e outra

engastada, Figura 20.

47



2 . . 11—_41:0010\/
NNNNNN) NN

FIGURA 20: ESTRUTURA TRELICADA UTILIZADA NO EXEMPLO 3. ENCONTRAM-SE INDICADOS OS
NOS QUE FORAM UTILIZADOS PARA COMPA RACAO.

As barras da trelica possuem 4rea igual a 18cm? e 10cm de comprimento. A
analise foi realizada considerando ndo-linearidade geométrica (grandes deformacdes),
lincaridade fisica com médulo de elasticidade do material igual a 2/0GPa e coeficiente
de Poisson igual a zero.

O mesmo problema, com as mesmas condigdes de contorno, propricdades de
material ¢ carregamento, foi simulado no programa Abaqus. Foram retirados os valores
de deslocamento final dos nés indicados na Figura 20, a fim de comparar de forma
quantitativa com os resultados obtidos pelo programa desenvolvido. Estes dados estio
listados na Tabela 2 , onde é calculada a diferenga percentual entre os resultados do
programa ¢ do Abaqus. Utilizando-se das funcdes de pos-processamento deste, foi
plotada a configuragio deformada da estrutura que pode ser comparada,

qualitativamente, com a deformada produzida pelo programa, através da Figura 21,

TABELA 2: DADOS COMPARATIVOS DOS DESLOCA MENTOS EM TRES NOS DA TRELICA DO

EXEMPLO 3.
Prog. Treli¢ca Abaqus Diferenca %
Dir. x N6 11 -8,057 7,848 2,6
Dir. y N6 11 18,73 -18,68 0,3
Dir. x N6 18 -10,154 -9,950 2,0
Dir. y N6 18 142,60 -42.64 0,1
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Dir. x N6 21

-24.87 -24,72 0,6
Dir. y N6 21

-54,57

-54,63 0,1

Analisando a quarta coluna da Tabela 2, pode-se observar que a diferencga entre

0s resultados € pequena, donde se conclui que o programa desenvolvido esta realizando
uma correta andlise de estruturas trelicadas.

j\

FIGURA 21: CONFIUGURAGAO INICIAL E DEFORMADA DA ESTRUTURA DO EXEMPLO 3. A
ESQUERDA A OBTIDA PELO PROGRAMA, A DIREITA, A OBTIDA PELO ABAQUS.

Atraves da Figura 21, percebe-se que, o pos-processamento do programa também

funciona de maneira correta, haja vista que as duas deformadas se assemelham de forma
bem evidente.
4.5.4 Exemplo 4

Considerando satisfatéria a verificacdo do funcionamento do programa, neste
tltimo exemplo, procurou-se trabalhar com uma simulagio um pouco mais conceitual,

que envolve a utilizagdo de estrutura treligada para modelar um solido.
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Essa abordagem ¢ interessante, pois aborda o uso de um elemento
unidimensional simples, de facil manipulagfo, a0 invés de um elemento complexo bi ou
tridimensional de vérios graus de liberdade. Além dessa maior facilidade no
entendimento do comportamento do elemento, vantagens como a maior velocidade de
processamento também motivam esse tipo de estudo.

No exemplo (Quadro 15), uma placa de aco de S0cm x S0cm, 1,94em de
espessura, modulo de elasticidade de 2/0GPa e coeficiente de Poisson de 0,33, ¢
modelada no Abaqus com elementos de casca e no programa com elementos de trelica
de 0,5cm” de 4rea e mesmas propriedades de material, como mostra a Figura 22. A 4rea
do elemento de casca foi ajustada de modo a produzir o mesmo deslocamento do né
carregado que o obtido na estrutura trelicada. Um dos lados da placa estd engastado e

numa das pontas livres ¢ aplicado uma carga de 2000KN.

z \L" : P = 2000KN

Wl T e S R, \l-‘-‘,‘
- [ — A s N
D e
N o e e
e e R — A
B

FIGURA 22: MODELOS DE UMA PLACA QUADRADA. A ESQUERDA, UTILIZANDO ELEMENTOS DE
TRELICA, A DIREITA, ELEMENTOS DE CASCA (ABAQUS).

Os exemplos foram processados com 100 incrementos de carga ¢ a configuragio final
das estruturas é mostrada na Figura 23,
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FiGura 23 CONFIGURACAO DEFORMADA DOS MODELOS DA PLACA QUADRADA. A ESQUERDA,
UTILIZANDO ELEMENTOS DE TRELICA, A DIREITA, ELEMENTOS DE C. ASCA (ABAQUS).

Analisando as deformadas da Figura 23, pode-se dizer que as duas se
assemelham e esse resultado pode ser considerado satisfatorio, visto que nenhum tipo de
estudo relacionado a um maior refinamento da malha trelicada foi feito. Portanto, a
principio, esses resultados conduzem a acreditar que com melhor um estudo dos
parametros envolvidos, seja possivel conseguir um bom modelo de sélido utilizando

estruturas trelicadas.
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5 DISCRETIZACAO DE VIGAS E PLACAS COM
ELEMENTOS DE TRELICA

Apbs realizagdio dos testes para teste do programa, iniciou-se um trabalho de
simulagio de estruturas trelicadas, com o objetivo de modelar vigas, placas ¢ sélidos.
[nicialmente, ¢ utilizado um método criado empiricamente e, em seguida, a partir de

equagdes retiradas da literatura, essa modelagem é aprofundada.
5.1 METODO EMPIRICO

Nesta etapa, a area da segdio transversal € a altura de uma estrutura trelicada
foram variadas a fim de verificar sua implicagfo na proximidade com o comportamento
de uma viga correspondente. Dois tipos de carregamentos foram utilizados, um

concentrado e um distribuido.

5.1.1 Procedimento e Resuitados

A viga utilizada na modelagem e apresentada na Figura 24 trata-se de uma viga
em balango, de comprimento I = 100mm ¢ secdo transversal quadrada de lado igual a
{0mm. O material escolhido foi 0 ago, com médulo de elasticidade £ = 2/0GPa e

coeficiente de Poisson v = 0,33,

r_ﬁﬁl

;I'

1o

AN

FIGURA 24: VIGA UTILIZADA NO ESTUDO DA MODELAGEM POR TRELICA. MEDIDAS EM MM,
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Foram dois os tipos de carregamento utilizados para a viga descrita acima, um

com carga concentrada, outro com carga distribuida ao longo do comprimento, como

pode ser visto na Figura 25.

W
T[T ITITT I TTIITTT

FIGURA 25: TIPOS DE CARREGAMENTO UTILIZADOS NA MODELAGEM DA VIGA,

A malha da trelica utilizada na simulagio numérica pode ser vista na Figura 26,

onde estdo explicitos os nds e os clementos da mesma.

2 4 ) =] 10 ig 14 16 t8 20 2z
f — W — | . . - e . 2 ;
7 ,\{ ig I.\ [-1 3| L | pe N | [ | —
\ gt [ | \
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FIGURA 26: MALHA DE ELEMENTOS FINITOS DE TRELICA UTILIZADOS NA MODELAGEM DA
VIGA. EM AZUL S40 APRESENTADOS OS ELEMENTOS E EM PRETO OS NOS.

Procurando aproximar ao méaximo o comportamento da treli¢a com o da viga, a
malha utilizada na simulaciio desta foi gerada com dez elementos, o que corresponderia

aos dez “bloquinhos™ que formam a treliga. A Figura 27 apresenta a malha utilizada na

simula¢io da viga.

1 4 t ; 5 1 11

1

% 84 L < < - <+ o -

FIGURA 27: MALHA UTILIZADA NA SIMULACAO NUMERICA DA VIGA EM BALANCO. EM AZUL SA0
APRESENTADOS OS ELEMENTOS E EM PRETO OS NOS.
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O procedimento consistiu em primeiro aplicar um carregamento vertical na viga
e, utilizando a teoria linear, calcular o deslocamento vertical sofrido na extremidade
livre, 6, o qual nfo deveria ultrapassar cerca de 10% do comprimento da mesma. Em
seguida, para a treliga submetida ao mesmo carregamento, com uma determinada altura
fixada, variou-se a drea da segdio transversal do elemento até obter-se 0 mesmo
deslocamento apresentado pela viga, o que correspondeu a uma fase de “calibracio” da
trelica. As simulagdes foram realizadas com cinco valores de altura de trelica diferentes:
H=7,8910,e 11 mm. Os valores de area encontrados para estas diferentes alturas sdo

apresentados na Tabela 3, de acordo com o tipo de carregamento aplicado.

TABELA 3 VALORES DE AREA DA SECAQ TRANSVERSAL DO ELEMENTO DE TRELICA PARA O8
DOIS TIPOS DE CARREGAMENTO DE ACORDO COM A ALTURA DA TRELICA. UNIDADE: MM.

H=7 H=8 H=9 H=10 H=11
mm mm mm min mm
P=2500 N
51,56 33,99 24,24 17,74 13,43
6=4,76 mm
w=100
KN/m 45,59 32.38 23,94 18,28 14,35
6=7,14 mm

Com a altura definida e a 4rea encontrada, a trelica foi entfio simulada com
valores supetiores de carregamento, com o objetivo de comparar seu comportamento, no

regime de grandes deslocamentos.

5.1.1.1  Carregamento concentrado

Os valores do carregamento concentrado foram escolhidos de modo a
proporcionar valores de deslocamento vertical de cerca de 80% do comprimento da viga,

0 que ¢ satisfatério para a andlise de grandes deslocamentos. Estes valores de
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carregamento, juntamente com os resultados obtidos para o valor de 8, podem ser vistos

na Tabela 4, de acordo com a altura definida.

TABELA 4: VALORES DE DESLOCAMENTO VERTICAL DA EXTREMIDADE LIVRE, ENCONTRADOS
PARA A TRELICA, COM CARREGAMENTQ CONCENTRADO. UNIDADE. MM,

H=7 H=8 H=9 H=10 H=11

mm mm mmt mm mim

P=75KN [ 1125 1239 1322 1420 1517
P=125KN [ 1757 1970 21,32 2316 2497
P=250KN [ 31,8 3575 3866 41,80 44,79
P=S00KN | 5220 5689 60,23 6361 66,74
P=100,0KN | 7136 7503 77,70 80,55 8345

A simulagdo viga foi realizada com o software ABAQUS da HKS ¢ os resultados

encontrados sdo apresentados na Tabela 5.

TABELA 5: VALORES DE DESLOCAMENTQ VERTICAL DA EXTREMIDADE LIVRE DA VIGA, PARA
CARREGAMENTO CONCENTRADO. UNIDADE: MM.

P=75 [ P=125 P=250 | P=50,0 |P= 100,0
KN KN KN KN KN
14,10 22,72 40,01 59,59 74,51 ‘

A diferenga entre as resposta pode ser melhor visualizada ao observar-se as

curvas representantes dos deslocamentos, apresentadas na Figura 28. Nesta, o

deslocamento ¢ normalizado em relagdo ao comprimento da viga ou trelica e o momento

de inércia da secio, /, utilizado na adimensionaliza¢do da carga, refere-se 3 viga.
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FIGURA 28: DESLOCAMENTOS DA EXTREMIDADE LIVRE ENCONTRADOS PARA VIGA E TRELICA
(PARA OS DIFERENTES VALORES DE SUA ALTURA H), CONSIDERANDO CARREGAMENTO
CONCENTRADO.

Com o objetivo de obter pardmetros para uma melhor anslise dos resultados, uma
curva contendo a diferenca média dos cincos pontos, entre a viga e a treliga, para cada

valor de altura da trelica, foi construida e é apresentada na Figura 29,

18

|
16

14 1

—
N

Diferenca %
S

6 7 8 9 10 11 12
Altura da Treliga, H {(mm)

FIGURA 29: DIFERENCA MEDIA ENCONTRADA PARA CADA VALOR DE ALTURA DA TRELICA,
CONSIDERANDO CARREGAMENTO CONCENTRADO,
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5.1.1.2  Carregamento Distribuido

O mesmo procedimento foi realizado considerando, desta vez, um carregamento
por unidade de comprimento, w. A Tabela 6 apresenta os resultados encontrados para o

deslocamento e os valores do carregamento, segundo a altura da trelica.

TABELA G: VALORES DE DESLOCAMENTO VERTICAL DA EXTREMIDADE LIVRE, ENCONTRADGS
PARA A TRELICA, COM CARREGAMENTO DISTRIBUIDO. UNIDADE: MM.

H=7 H=8 H=9 H=10 H=11

mm mm min mm mm

w=175KN/m | 11,37 11,75 1213 12,52 12,90
wW=350KN/m | 20,03 2226 2350 2475 2601
w=700KN/m | 3844 4097 4349 46,01 48,57
w=1050 KN/m | 52,26 5541 5851 61,62 64381
w=1400KN/m | 62,59 6590 69,14 7246 76,71

A viga foi simulada, de maneira anloga & anterior, utilizando o programa de

elementos finitos ABAQUS. Os valores calculados sio apresentados na Tabela 7.

TABELA 7: VALORES DE DESLOCAMENTOQ VERTICAL DA EXTREMIDADE LIVRE DA VIGA PARA

CARREGAMENTO DISTRIBUIDO. UNIDADE: MM.

w=175 P =350 P=700 P=1050 P =1400
KN/m KN/m KN/m KN/m KN/m
14,10 22,72 40,01 59,59 74,51

As curvas dos deslocamentos obtidos para a trelica e para a viga foram entdo
plotadas, Figura 30. Da mesma maneira, o deslocamento ¢ normalizado em relacdo ao

comprimento da viga ou treliga e 0 momento de inéreia da se¢do, /, refere-se & viga.
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FIGURA 30: DESLOCAMENTOS DA EXTREMIDADE LIVRE ENCONTRADOS PARA VIGA E TRELICA
(PARA OS DIFERENTES VALORES DE SUA ALTURA H), CONSIDERANDO CARREGAMENTO
DISTRIBUIDO.

Novamente, com os resultados obtidos, pode-se plotar uma curva representando a
diferenca média entre a resposta da viga e a da trelica, para cada valor de altura desta, A

Figura 31 apresenta esta curva com a diferenca dada em porcentagem.
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FIGURA 31: DIFERENCA MEDIA ENCONTRADA PARA CADA VALOR DE ALTURA DA TRELICA,
CONSIDERANDO CARREGAMENTO DISTRIBUIDO.
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5.1.2 Discussdo

Baseando-se nas curvas deslocamento-forga obtidas para as diferentes alturas da
treliga, Figuras 5 ¢ 7, percebe-se que o formato das mesmas se assemelha em muito com
o da curva que representa a resposta da viga. Isto nos leva a afirmar a possibilidade da
validade da modelagem realizada, O comportamento da viga, submetida a grandes
deslocamentos, se aproxima, portanto, do de uma estrutura formada por barras de treliga.

Analisando numericamente a diferenca entre as curvas da treliga e da viga, tanto
para o carregamento concentrado como para o distribuido, pode-se observar que existe
uma regido de altura, ao redor de 9mm, na qual o erro se mantém num nivel aceitavel
para validagdo da modelagem realizada, por volta de 3% a 4%. Além disso, observando
a mudanca no valor das 4reas dos elementos de trelica provindas da calibragiio da
mesma, quando do uso do carregamento concentrado e distribuido, percebe-se que a

mudanga & menor para os 9mm, considerando apenas as alturas simuladas, Tabela 8.

TABELA S: DIFERENCA ENTRE AS AREAS DE CALIBRACAO DOS ELEMENTOS DE TRELICA QUANDO
D4 MUDANCA DO CARREGAMENTO, EM %,

H=7 H=8 H=9 H=10 H=11
mm mm min mm mim

11,6 4,7 1,2 3,0 6,9

Conclui-se, portanto que, pelo menos para os casos mais simples como os
analisados anteriormente, é valida a modelagem de vigas através da discretizacio em
elementos de treliga, dispostos de uma maneira adequada, formando uma estrutura como
a exposta neste trabalho,

Para melhor conhecimento da altura que proporciona a melhor aproximacio da
viga pela treliga, a partir do método utilizado, seriam necessarios algumas simulagdes
com valores préximos aos 9mm encontrados, e entio se procuraria estabelecer uma
relagdo entre este e outros pardmetros da trelica com as varidveis da viga.

Com relago ao refinamento da matha, o método induz que o aumento do nimero

de elementos, nas simula¢des, levara a uma melhor aproximacao da trelica com a viga e
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desta com uma viga real, tanto devido ao aumento dos graus de liberdade da estrutura

\

quanto a melhor discretizagdo do carregamento no caso em que s¢ use uma carga
distribuida.
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52 METODO ANALITICO

O método conhecido como Método dos FElementos Discretos consiste,
essencialmente, em substituir o material continuo do corpo elastico sendo estudado por
uma estrutura de barras arranjadas de acordo com um padriio definido. A estrutura
formada possui as mesmas dimensdes do corpo sélido e é submetida as mesmas
condigdes de contorno ¢ ao mesmo carregamento, sendo todos aplicados nas jungdes das
barras. Pode ser demonstrado que se o tamanho da unidade do padrio de tal estrutura é
feito infinitesimal, esta representard um modelo completo do protétipo sélido, com
deslocamentos, deformagdes e tensdes idénticas'.

Embora o método de elementos discretos n3o seja exato, ¢ seja um pouco
trabalhoso, ele permite a solugdo de um nimero de problemas, nos quais a matematica
formal falha'.

Buscando utilizar o método e avaliar seus resultados, trés exemplos foram
criados para comparagio com seus respectivos modelos continuos: uma viga em
balango, uma viga bi-engastada ¢ uma placa engastada numa de suas arestas. Em todas

as analises utilizamos carregamento concentrado considerando grandes deformagdes.

5.2.1 Viga em Balango

A viga plana, apresentada na Figura 32, trata-se de uma viga em balango, de
comprimento, L = /m, médulo de elasticidade, £ = 2/0GPa, coeficiente de Poison, v =

173, e seciio transversal retangular de 0, 5mm de largura e 10mm de altura.

AN

130

=
N

1000 5

FIGURA 32: VIGA UTILIZADA NA ANALISE NUMERICA. E=2] OGPA, v=1/3. UNIDADE: MM,
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Esta viga foi simulada no programa de elementos finitos ABAQUS, com a

utilizagdo de 20 elementos de viga, conforme a Figura 33.

P = 250KN

FIGURA 33: MALHA UTILIZADA NA SIMULACAO COM ELEMENTOS DE VIGA.

Para a estrutura trelicada que representa a viga foi selecionado uma célula padrio

quadrangular plana, apresentada no artigo, composta de quatro nés e seis barras,

conforme Figura 34.

1

FIGURA 34: CELULA PADRAO UTILIZADO NA ESTRUTURA TRELICADA QUE REPRESENTA 4 VIGA.

De acordo com o apresentado nesse artigo (Referéncia [13]), para um padrio de

malha quadrangular, de lado a, representando uma viga de espessura ¢, a drea das barras

horizontais e verticais & dada por

=-£—31~at = 7,5.10’5 m”

¢ a area das barras diagonais é dada por
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A estrutura resuitante da unido dos padrdes indicados acima & apresentada na

Figura 35. Foram utilizadas 250 células padrfo, num total de 1055 elementos de trelica.

FIGURA 35: ESTRUTURA TRELICADA UTILIZADA NA SIMULA CAO.

A resposta da malha com elementos de viga pode ser vista na Figura 36.

FIGURA 36: RESPOSTA OBTIDA NA SIMULACAOQ COM ELEMENTOS DE VIGA.

Aplicando as mesmas condicdes de contorno e de carregamento da viga,

indicados na Figura 33, foi obtida a seguinte configuragdo deformada para a simulagdo

da estrutura treligada, Figura 37.
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FIGURA 37. RESPOSTA OBTIDA NA SIMULACAQ DA MALHA TRELICADA.

Os valores para o deslocamento da extremidade livre podem ser comparados para

os dois casos simulados, Tabela 9.

TABELA 9: VALORES DO DESLOCAMENTO DA EXTREMIDADE LIVRE PARA OS DOIS CASOS
SIMULADOS, UNIDADE: M.

Horizontal vertical
Viga 0.2434 0,5959
Estrutura trelicada 0,2531 -3.9% 0,6044 — 1,4%

5.2.2 Viga Bi-Engastada

Para o caso da viga bi-engastada, foram utilizadas as mesmas malhas do exemplo

anterior, tanto para o caso da simulagiio com os elementos de viga, como para o caso da
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simulagdo dos elementos de treliga, porém com a mudanga das condi¢bes de contorno ¢

carregamento, Figura 38.

P = 2500KN

\\
N
N

AN

1000

FIGURA 38: VIGA UTILIZADA NA ANALISE NUMERICA. E=2] OGPA, v=1/3. UNIDADE: MM,

As novas configuragdes iniciais podem ser vistas na Figura 39 e na Figura 40,

para o caso dos elementos de viga e de treliga, respectivamente.

P = 2500KN

FIGURA 39: CONFIGURACAQ INICIAL DA MALHA COM ELEMENTOS DE VIGA.

P =2500KN

FIGURA 40: CONFIGURAGAO INICIAL DA MALHA COM ELEMENTOS DE TRELICA.

As configuragdes deformadas apos a aplicagiio dos carregamentos podem ser

vistas nas Figura 41 e Figura 42.
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FIGURA 41: CONFIGURACAO DEFORMADA DA MALHA COM ELEMENTOS DE VIGA,

OO e
xsg%ﬂﬂ'ﬁ L

REERL

FIGURA 42: CONFIGURACAQ DEFORMADA DA MALHA COM ELEMENTOS DE TRELICA.

Novamente, para comparagiio dos valores do deslocamento da regido central da

viga, para os dois casos simulados, foi construida uma tabela indicando as diferengas

percentuais, Tabela 10.

TABELA 10: VALORES DO DESLOCAMENTO DA LINHA ELASTICA NA REGIAQ DO NO CARREGADO
PARA OS5 DOIS CASOS SIMULADOS. UNIDADE: M,

Vertical

Viga

Estrutura trelicada

5.2.3 Placa engastada

0,1023

0,1033 - 1,0%
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No caso da deformagio de placas, torna-se necessério, para utilizagfo de células
padrdo planas, que os elementos utilizados tenham rigidez a0 momento aplicado, ou
utiliza-se células tridimensionais continuando com elementos que s6 apresentam
deformacdo ao longo de seu comprimento (elemento de treliga), o que foi utilizado neste
trabalho. Estas células tridimensionais sdio cubos de lado «, cujas faces apresentam o

padréo definido anteriormente, Figura 43.

\d

FIGURA 43: CELULA TRIDIMENSIONAL PADRAC UTILIZADO NA ESTRUTURA TRELICADA QUE
REPRESENTA A PLACA.

A placa utilizada ¢ uma placa quadrada de lado /00 mm, espessuta ¢ = Smm,
material elastico linear de £ = 2/0GPa e v = 1/4, submetida a 30KN em uma das suas
cxtremidades. As dreas das barras que compdem as células tridimensionais foram
calculadas conforme apresentado no artigo. Para os elementos internos da estrutura,

temos:

A=04a =10.107° m’ (arestas)
Ar=0566a" =141.10° i (diagonais)

Para os elementos de faces externas temos:

A'=4/2=02a =05.10° w’ (arestas)
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A’ =4,/2=0283a=0,707. 10° m’ (diagonais)

E, finalmente, para os elementos que formam as arestas do sélido:

A’ =A4/4=01a"=025.107m’

Como realizado para o caso das vigas, uma placa com elementos de casca foi
simulada num programa de elementos finitos, e esta sera considerada a resposta correta,
com a qual a simulagiio da estrutura trelicada sera comparada. As Figuras Figura 44,
Figura 45 e Figura 46 apresentam, respectivamente a geometria da placa, a malha com

elemenios de placa e a malha com elementos de trelica.

FIGURA 44 PLACA A SER SIMULADA COM ELEMENTOS DE CASCA E DE TRELICA. UNIDADE: MM,
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FIGURA 45: MALHA DE ELEMENTOS DE VIGA — 100 ELEMENTOS.

FIGURA 46 MALHA DE ELEMENTOS DE TRELICA — 400 CELULAS - 5381 ELEMENTOS.

As simulagdes foram realizadas e as configuracdes deformadas da malha com

elemento de viga e da malha com elementos de treli¢a séo apresentadas abaixo.
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FIGURA 48 CONFIGURACAO DEFORMADA DA MALHA COM ELEMENTOS DE TRELICA.

Para realizarmos uma comparagiio mais quantitativa, como feito anteriormente,
comparamos o deslocamento de um né da placa, correspondendo, neste caso, a0 n6 onde

se aplicou o carregamento, para as duas simulagdes, Tabela 11,

TABELA 11. VALORES DE DESLOCAMENTO DA LINHA ELASTICA NA REGIAO DO NO CARREGADO
PARA OS DOIS CASOS SIMULADOS, UNIDADE: M.

Vertical
Placa 0,024879
Estrutura trelicada 0,024879 - 3,2%
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5.2.4 Discussdo

Os resultados encontrados tanto para a discretizagéio da viga quanto da placa sio
suficientes para acreditarmos na validade do método apresentado no artigo referido
(Referéncia [13]). As diferencas percentuais encontradas foram pequenas: no caso das
vigas, a maior diferenca se deu no deslocamento horizontal do né carregado, em torno
de 4,0%; no caso da placa, obtivemos 2,5% de diferenca entre 0 modelo continuo e o
discreto,

Quanto ao tempo de simulago, no caso da viga, foram praticamente idénticos os
tempos de processamento do programa, tanto para elementos de viga como de placa, em
torno de 70s. Ja no caso da placa, o tempo de processamento da malha de elementos de
viga (~/3s) fol menor que o da malha de elementos de trelica (~/80s). Porém isto nio
invalida o método, pois acreditamos que quando da necessidade de utilizacdo de
elementos sélidos ao invés de elementos estruturais, o tempo de processamento serd
maior que o da estrutura trelicada, e também, como dito anteriormente, o estudo e
compreensdo de um problema podem se tornar mais facil ao se lidar com um elemento
finito simples, de facil entendimento, como ¢ o elemento de trelica. Além disso,
utilizando este método de elementos discretos, podemos realizar o procedimento ao
contririo do que apresentamos aqui, ou seja, quando o problema apresentar uma
cstrutura treligada muito complexa, podemos substitui-la por uma simples viga ou placa,

ou mesmo outro solido adequado.
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6 VIGA

Um elemento finito de viga serd aqui gerado, considerando tanto linearidade
como ndo linearidade geométrica, a partir do modelo de vigas de Timoshenko. A
definigdes que serdo apresentadas no texto foram retiradas, a principio, de Yojo'®, caso
contrario, sera explicitado sua origem.

A viga de Timoshenko, que considera a distor¢éo da segfio transversal por
cortanie, apresenta algumas vantagens de implementagiio computacional em relagdo a
viga de Bernoulli-Euler'®, como:

e [ mais ficil de se generalizar para ndo-linearidade geométrica;
e E facil fazer Elementos Finitos Isoparamétricos com qualquer numero de nds:
* A teoria € invariante perante a mudanga de eixo.

Inicialmente é feita a dedugio das equages da cinematica, onde apresenta-se a
hipéiese cinematica utilizada e a dedugdo das deformagdes da barra. Em seguida, a
cscolha da tensio compativel energeticamente é realizada. O equilibrio é, entio,
formulado através do principio dos trabalhos virtuais, seguido da formulacdio da equagio

constitutiva,

6.1 LINEARIDADE GEOMETRICA

6.1.1 Cinemstica

A teoria a ser utilizada para a formulacio do elemento finito de viga ¢ a teoria de
Timoshenko. Esta teoria baseia-se numa hipotese cinematica que leva em consideragdo o
efeito da distorgdo por cortante na deformacio da barra, sendo que os deslocamentos e

as rotagdes sdo independentes.
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6.1.1.1 Sistema de coordenadas e propriedades geometricas da segio

O sistema de coordenadas ¢ definido conforme Figura 49, que também apresenta

a forma de representagio de um ponto P de uma se¢lio transversal genérica de uma viga.

h

= P ) AR
\\ X \‘
\
F 3 € ‘\ Yot “I
1 1
€> [ 4 J | >
] \ j X3

FIGURA 49: REPRESENTACAO DE UM PONTO DA SECAQ TRANSVERSAL DA VIGA NO SISTEMA DE
COORDENADAS.

O sistema de coordenadas utilizado é composto de uma bas¢ ortonormal,
formada pelos versores

1 0 0
e = 0 e = 1 gy = 0
0 0 1

As coordenadas de um ponto material, P, numa sec¢do transversal genérica da
viga podem, entdo, ser dadas por

X = Xoly + €3
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onde o = 1,2, ou seja

2
Xola = Z KXol
a=1

Em todo o texto serd usada essa notagio de somatério, com as letras gregas

variando de [ a 2.

A area de uma segdo transversal genérica da viga ¢ dada por

A= [dd= [axar,

A A

Os momentos estaticos sio dados pela EXpressio

S = eop [xdd
A

onde defini-se a matriz e, que serd utilizada ao longo de todo o texto, como

0 1
e= [1 O:,,OUSG_].HeH:O,e]z:1,321:—1,622:()

Assim, explicitando os momentos estaticos, em relagdo aos dois eixos que

definem a secdo transversal, tem-se que

Si= fxdd e §;= |- xda

A A

Os momentos de inércia da segfo transversal sio definidos por

A
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que formam as componentes

Jn= [x}dd
A
Jn =[x dd
A
Jiz= - [xx, dA
A

Por fim, o momento polar de inércia é definido como

Jo = [(xq %,)dd =iy + oy = [ +x3)d4
A A

6.1.1.2 Hipdtese cinematica

Na teoria de Timoshenko admite-se que as se¢des transversais, durante a
deformagio da viga, permanecem planas (ndo hi empenamento), mas nio

necessariamente perpendiculares ao eixo da viga, como eram na configuragiio inicial.
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x; 4

1
) B
’

Figura 50: deslocamento de um ponto genérico da viga.

O deslocamento de um ponto P, genérico, pode ser representado por um vetor

deslocamento, &, Figura 50, que, em condigbes de linearidade geométrica, pode ser

eXPresso por:

d=u+0xa

onde
U,

u=|u, | € o deslocamento dos pontos do eixo central da viga

U,
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0
@=10, éarotagiio da segio transversal da viga
0

X,

a4 = Xo€y = | X, | € a posi¢io do ponto P na seglio transversal na configuracdo inicial € o
0

b

sfmbolo “ x * representa produto vetorial.

Lembrando da defini¢io de produto vetorial
L% = (i3 — izj2)er + (iyf1 — iyja)er + (i — ij))es
pode-se expandir o vetor deslocamento, 8, em termos de suas componentes
O = uy—x264
& = uy+x,6;

&= w3+ 00 -x6

Pode-se escrever o vetor deslocamento, &, através de suas componentes, na forma

compacta

O = Ug— Cap XBHJ

0 = uj - Eaf goch

2
lembrando que egp 3= Y > e, x, .

2
u=1 B=]
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6.1.1.3 Deformacées

A forma de variagdo do deslocamento de um ponto, ¢m relagfo as trés diregGes

da base, é expressa através do gradiente do vetor deslocamento, dado por

L=06,,Qe,+5'®e

onde

(o= é(_)

ax,,

= 96)
0= %

¢ 0 simbolo * ® * denota produto tensorial de vetores.

Os componentes vetoriais do gradiente dos deslocamentos sio dados por

5,; = Oe; -+ 6382 — bhe;
8,2 =—6he, +0e; — Bes

ou, na forma compacta, por
O, = 0% e,
A derivada em relagio a & é dada por
d'=u — B,xre) + O:x1 ey + (x28] —x16) e3
ou, na forma compacta, por

6'=u'+8'xqa
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Fazendo o produto tensorial obtem-se a matriz L

0 -0, U — x,0,
L=|8, 0 u, + x,0;
-4, 8, uy + 5,0/ - x0,

O tensor das deformagdes sob linearidade geométrica, tensor de Green, é

definido por
E=%(L+L"
substituindo L,
0 0 V2(u) -0, —x,0,)
E= 0 0 Yalaty + 6, +u0)
a(u — 6, —x,0;) Yoy + 60, +u,0) uy + x,0) — x,6%)

Pode-se extrair a terceira coluna do tensor acima na forma compacta

Ep=% (u; —egp xply — eapbh)

— ’ t
E33 . Li3 . 6&[} X(x 851

Defini-se um vetor, %, que caracteriza a deformag@o na dirego e; (terceira coluna
do tensor E)

Y= Yoy +Ee;
onde
Yo =2Eq;

£ —_—E33
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de tal modo que

0 0 2y,
E=|0 0 %y,
%y ay e
O vetor y ainda pode ser escrito como

y=u'—-0@xe;+8%aq

ou ainda como

u; 4, A
y=luy+6, | + |60, | xa
s A
onde defini-se
uy - 8, 91’

7= |u,+6, e k=0'=\0| = y=np+xxa
u b

As componentes do vetor 7 representam a deformagdio por distor¢io e o

alongamento ao longo do ¢ixo e o vetor K representa as rotagdes especificas da viga em

torno do seu eixo.

O vetor pode ser representado, na forma compacta, por

o= U, — euplh

.
7= Uy
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As componentes do vetor de deformagio podem, entiio, ser escritas como
Yo Tlo — €opXp Ky

EF 13 Feopky Xp

6.1.2 Tensdes
O tensor das tensdes pode ser expresso como
T=t,®e,+ 1R e;

onde {, sdo as tensdes atuantes no plano normal aos vetores e, e 7 ¢ a tensdo atuante

normal ao vetor e;, cujas componentes sio dadas por

T= Ty ey + O e
Tw= T4

a= T33

O tensor das tensdes € simétrico e, escrevendo-o na sua forma explicita, tem-s¢

4 {4, T
T=|1, f, 12
7] @ o

81



6.1.3 Equagles de equilibrio — PTV

6.1.3.1 Trabalho dos Esforcos Internos

O trabalho dos esforgos internos pode é definido como

W, = ”T;EdAdg“
1A

onde o simbolo * : * denota produto escalar de dois tensores, que no caso, resulta em
T:E=t(E'T)=
Y 0 %y 2 4r: i
tr|| 0 0 2V || [ L | =0y + ny:+ oe=

an ey, & 4 &2 4

ST Y =t oe

onde o simbolo - * denota produto escalar de dois vetores.

Integrando na sec¢do transversal tem-se

Wi= {[r-ydad; = [fr-(r+wxaydadac
1A {4

W, = ”rdA-rydC+”(axr)dA~de
4 !4

pois T (kX a)=a - (rxK)=(a > 1)k
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Definindo as integrais

.
n= [rdd = Voey + Nes=| ¥,
. N

A

M,
m= IaxrdA =Mueot+Tez=| M,
Vi

onde

Vo= j t,dA (forgas cortantes)

A

N= |odA (forga normal)

A

M, = eqp IIBJdA {momentos fletores)
4

T'=eup _[ x,TydA (momento torsor)
A

Pode-se, entdio, escrever o trabalho interno como

W = j(n-q—hm ‘wYd¢
]

As forgas cortantes, neste modelo, nio produzem trabalho, sendo subtraidas,

portanto, da express3o do trabalho interno. Deste modo, pode-se definir os vetores dos

esforgos internos ou tensdes generalizadas o e das deformagdes generalizadas &£ dados

por

83



A expressio do trabalho dos esforgos internos pode, entio, ser reescrita como

W1=j(a-e)d(
!

Definindo um vetor de deslocamentos generalizados como

o vetor das deformagdes generalizadas £ pode ser obtido por

£= BAd

onde

LY bl
0 -1 0
E;=|1 0 0
0 0 0

03 representa uma matriz 3x3 de zeros e I3 uma matriz identidade 3x3.

Por fim , o trabalho dos esforgos internos pode ser escrito como

W,=ja-BAdd¢
{
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6.1.3.2 Trabalho dos Esforgos Externos

O trabalho dos esforgos externos ¢ dado pela seguinte expressio

Wi = ji~adc+j5-ad,4 dc +q* - d
{1L.C A

onde f ¢ vetor das forgas superficiais laterais, & ¢ vetor das forcas volumétricas, C é o

contorno da se¢do transversal e ¢° ¢ dado por

onde n” ¢ m" sio, respectivamente, os vetores das forcas e momentos externos aplicados
nas extremidades da viga,
Definindo agora os vetores # e m, respectivamente, vetor de forcas e

momentos externos por unidade de comprimento, como
= [tdC+ [bas
c A

m = laxtdC+ |laxb dA
c A

Agrupando os vetores dos esforcos externos num anico vetor de esforcos

generalizados, definido por

tem-se para a expressdo do trabalho externo
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We=[§-ddl+q"d
7

6.1.3.3 Equilibrio — Principio dos Trabalhos Virtuais

De acordo com o que foi apresentado na teoria de treligas, o principio dos
trabalhos virtuais diz que para um corpo rigido em equilibrio estatico, o trabalho virtual

dos esforgos internos é igual ao trabalho virtual dos esforgos externos:
5W[ = éWE
O trabalho virtual dos esforgos internos pode ser escrito como

5WI=J.(n.6q+m-()‘k‘)d(= f[n-(du’+e3 xéf))+mr§9’]dé‘
] !

onde
du, — o6, ou, od, o6,
o= |0u,+00, |, du'=|ou, |, 00=|36, | e Sx=56'= o6,
ou ou, o4, oo,
Da mesma maneira, o trabalho virtual dos esforgos externos pode ser escrito
cOmo
Wy = [ (7 -ou+7-060)dC + '™ 6u +m'- 5
!
onde
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Substituindo na expressio do equilibrio, tem-se que

Wy~ Wi = [[n-ou'~(e,xn)-60 +m 00"~ it -Su 7 -50]dl — ' Su — m" 56= 0

!

Realizando a integragfio por partes dos termos com parcela diferencial, chega-se

j[—(n'+ﬁ)a‘u —(m’ + e, xn+7t)-00]dl +
I
+(n—n)-duly+(m-m")-60|, =0

resultando os seguintes termos de contornos

(n—n")-ouj,=0

(m—m')-00{, =0

Estes termos de contornos se anulam para as seguintes condi¢des de contornos

naturais

n= n*(O) e n= n*(l)

m=m'(0) ¢ m=m'())

Os termos também se¢ anulam quando utiliza-se as condi¢des de contorno

essenciais, dadas por
#0)=u'(0) ¢ u(h)=u'(l)
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K0)=6(0) e &H=6(D

resultando em

W~ Wy = [[- (' + m)ou —(m' + e, x n+71)-060]d = 0
I

Como os deslocamentos virtuais generalizados sio arbitrarios, pode-se obter as

equactes diferenciais de equilibrio, dadas por

n+un=o

m'+e, xn+m=o
onde o ¢ o vetor nulo. Na forma de componentes, tem-se
! [y
V,+n,=0

N'+n,=0
M eV, +m,=0

T'+i,=0

6.1.4 Lei Constitutiva

Utilizar-se-4 para a formulagio das equagles constitutivas uma relacio eldstica
linear dada por:

Substituindo a lei constitutiva na expressio da forga cortante, tem-se
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Vo= [1,dA4 =G [7,d4 = G [(n, +eopxye;)dd
A A

A

Va= GAny —eupGra [xyd4 = GAn,, ~ GSars
A

A forga normal a segfio passa a ser dada por

N=fodd = [Ecdd = E [(1; + oy 13 )dA
A A A

N=FEAn; +ESyk,

lembrando que

Sa = egp |XpdA (momento estatico)
A

Da mesma forma, os momentos fletores sdo dados por

My = eq, J-xva dA = ey nyE(Ws +epgKg s )dA
4 A

My =Eneqy J‘xv dA+ E K €oyeps J‘xy)c8 dA
A A

Ma =ES(1 773 +EJ(1BKI3

lembrando que

Jup = eayeps | X, x5 dA (momentos de inércia da secio)
A

Por fim, o momento torsor torna-se



T'=eu j X, Tgdd = Geyy Ixu (—ep, 3, )dA
y 4

T=eqpGrny IxadA —eqpep, Gy J.xaxydA
A 4

como

-lsea=y=pf

€aplpy =

0 caso contrario

tem-se que
T'=-GSan, + Gk, JxaxadA
A

ou ainda

lembrado que

Jy = J. (xl2 +x22 }dA (momento polar de inércia)
A

Assim, a relacio entre o vetor de esforcos internos e o de deformagdes fica
oc=D¢g

onde
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0 0 E4 ES, ES, 0
0 0 ES, EJ, EJ, 0
0 0 ES, EJ, EJp 0
-GS, -GS, 0 0 0  GJ,

6.2 NAO LINEARIDADE GEOMETRICA

6.2.1 Cinematica

Do mesmo modo que no caso linear, a hipétese cinematica utilizada serd a da
viga de Timoshenko, que considera que o efeito da rotagfo da secfio devido a forca
cortante, sem levar em conta 0o empenamento, ou seja, a secdo permanece plana durante

a deformagio da barra.

6.2.1.1 Sistema de coordenadas

No caso de grandes deformacdes, o equilibrio ¢ realizado na configuragio

deformada da barra. Isto faz com que deva-se adotar um sistema de referéncia com duas
bases: uma fixa na configuragio de referéncia {e/,e;, el}, com e perpendicular a
se¢do ¢ na dire¢io do eixo da barra; e outra mével {el, e, e3}, com ey perpendicular a
$e¢30, ndo necessariamente na diregio do eixo da barra . A Figura 51 apresenta o

sistema com as duas bases e também os principais vetores que serdo utilizados durante a

analise.
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FIGURA 51. REPRESENTACAO DO SISTEMA DE COORDENADAS COM DUAS BASES, UMA FIXA £
OUTRA MOVEL,

As coordenadas de um ponto P', na configuragio de referéncia, sdo representadas
pelo vetor &xq, &), e as coordenadas do ponto na configuragdo deformada, P, sdo dadas
por X(Xq, ¢)

A notagio de somatério é a mesma da apresentada no caso linear, com letras
gregas variando de 1 a 2, e letras latinas variando de 1 a 3. Do mesmo modo, as

propriedades geométricas da segio podem ser calculadas como definido no caso linear.

6.2.1.2 Hipdtese cinematica

A mesma hipétese cinematica adotada para o caso linear €, agora, aplicada

considerando néo linearidade: supde-se que as segOes transversais, originalmente planas

92



¢ perpendiculares ao eixo da bara (configuragio de referéncia), permanecem planas e
indeformaveis, porém nio necessariamente ortogonais ao eixo da viga. Essa ndo
ortogonalidade ¢ devido & distor¢do por cortante, que no caso, ndo leva ao empenamento
da segdo transversal.

Na configuragéo de referéncia, um ponto generico, P, pode ser descrito por uma

funcdo vetorial dada por

§=(+d
onde
c=(e
3
descreve os pontos do eixo da barra e
a =xqe;

descreve a posi¢io relativa dos demais pontos de uma secio transversal.
Na configuracdo atualizada, 0 movimento da barra pode ser descrito por uma

fungdio vetorial x = x(&, ¢) dada por

xX=z+4a

onde z = z({, 1), descreve o movimento do eixo da barra € g = a(<, 1) descreve o

movimento relativo dos demais pentos de uma sego. O vetor 4 é dado por

a=Q0a = x.e,

onde defini-se @ = Q(¢; 1), o tensor ortogonal das rotages das se¢des transversais, de
modo que, ¢; = @ ¢] formam uma base ortonormal, chamada de base local mével. Como

dito anteriormente, e; continua perpendicular a se¢lo, ndo necessariamente na direcio do
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eixo da barra. As componentes a, = a - e, na base local mével sio invariantes, pois @, =
.ra.
O tensor das rotagdes das secBes transversais 0 pode ser descrito através da

férmula de Euler-Rodrigues'® dada por

sent

2
g=1+5 g, Lsen (02) 5

6 2 (6/2)

onde © ¢ um tensor anti-simétrico, cujo vetor axial ¢ designado por 6, ¢ § = || |[. As
componentes de @ caracterizam os graus de liberdade de rotagdio das se¢des.

O vetor dos deslocamentos dos pontos da barra ¢ definido como

o=x-¢

As componentes do vetor dos deslocamentos do eixo da barra, dado por

u=z-¢

caracterizam os graus de liberdade de translagio das se¢des transversais.

6.2.1.3 Deformagdes

O gradiente da transformacio ¢ definido e representado por

onde
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= 90
() o

Derivando cada termo tem-se
S=0e=e ¢ x'=1'+ Q% =7'+ 00"

onde (-)T denota a operagio de transposi¢io de um tensor ou matriz. Obtém-se também,

da diferenciagio da equagéio do vetor dos deslocamentos do eixo da barra,
7'= e; +u'
Definindo o vetor das deformaces como
n==z'-e = e} +u' e
e o tensor anti-simétrico K = Q'Q", cujo vetor axial € x; pode-se escrever que
x'=g'+Ka=e;+n+xxa

Substituindo na equagio do gradiente da transformagio e lembrando que Q = ¢;

®e, obtém-se

F=e,®e, +{ex+n+xxa)® e;=0+(n+xxa

F=0+yx e
onde defini-se o vetor das deformacdes em ponto qualquer da se¢cio como

y=n+xxa
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Utilizando os seguintes vetores

ke P
7=017=02z" ¢
K=0"x
y'=Qy=r+Kxd
pode-se reescrever o gradiente da transformagio como

F=QI+(f+KX*xd)® ej]=Q[I+7 ® e}] (a)

onde { ¢ o tensor identidade.
Indicando a diferenciagio no tempo por um ponto superposto, a velocidade de

um ponto da barra ¢ dado por
d=x=u+Qa=u+mwxa (b)

. T - Yo s . i
onde £2= 0 Q" ¢ o tensor anti-simétrico das velocidades angulares e @ o seu vetor axial

(vetor das velocidades angulares). Da diferenciagio da formula de Euler-Rodrigues,

obtém-se

onde

=7 +}_En_"(__9/2_2)9+(1_3_€ﬂ€) 176)2
2 (6/2) g &

Assim, pode-se escrever
d=u+ (I'd)xa
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Analogamente tem-se que
w=1r¢
e lembrando que Q' I'= 71", chega-se a
K'=TI"¢

Note que Q'=(K + K$2)Q = (£2'+ £K) Q, pois a ordem de diferencia¢do nio

altera o resultado. Portanto, £2'= K + K. K, ou seja,
O=K—-wW*K

O gradiente das velocidades é dado ou pela diferenciagio de (a) no tempo, ou

pela diferenciagdo de (b) no espago, que resultam em
.00 .
F=Z"=QOF+0Q(;' ® ¢!
o o7 3)

Diferenciando o vetor das deformagdes, na configuragio de referéncia, obtém-se
P =R +r" xa"
onde

=07 -ox3)= Q" + 7' x (I')]

K =0 (k-oxK)=0"w =0" (I8 + Ié")

¢ a derivada do tensor I” é dada por
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b i [sen@ _sen’(8/2)

el o )y

92

L[l sen” (68/2) 3(1_ senl
)

2
+l sen (9/22)@, [ senf
2 (6/2)

Definindo o vetor das deformagdes generalizadas da barra como

e o vetor dos deslocamentos generalizados da barra como

pode-se escrever
£=BAd

onde

5-12 oJ1 zr o
o ¢9'lo r r

onde O € o tensor nulo e Z'¢é o tensor anti-simétrico cujo vetor axial é 7', e

J(B-B’)@+
Ji (6-6)6° +
62

1
l-—— | — (PO +O'@
5 ]92( )
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12 o]
o
a=f o 1
o 1<
&

Os vetores de deformagdo aqui apresentados, 77" ¢ &, ndio estdo relacionados com
0s componentes dos tensores de deformacdes usualmente apresentados na teoria de
estruturas como por exemplo o Tensor das Deformacdes Linear conjugado com o Tensor
das Tensdes de Biot'®.

Embora as deformagdes utilizadas nao pertencam a nenhuma familia de
deformagdes, elas possuem a propriedade de serem invariantes perante movimentos
superpostos de corpo rigido. Portanto, sdo grandezas objetivas ¢ servem para a

formulagio de relagdes constitutivas'®,

6.2.2 Tensbes

O tensor a ser empregado no caso nio linear serd o 1°, Tensor de Piola-Kirchhoff.
*

P, que ¢ energeticamente conjugado com o gradiente de velocidades F . Esse tensor P
pode ser apresentado por

P=t;,® e e, +1® ¢}
onde ¢ a forca superficial na secio transversal, que € dada por

— r

que também pode ser representado por
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T=Tyey+ oe;

onde 7, sdo as tensdes de cisalhamento e o é a tensio normal nas seches transversais na
configuragio deformada.

O tensor pode ser escrito também como

tl L 7
P=t, L s
T, 7, o

6.2.3 Equacbes de equilibrio ~ PTV
6.2.3.1 Poténcia dos Esforcos Internos
A poténcia dos esforcos internos pode ser definida como

Pi= [[P:Fadac

74

¢ lembrando que F=QF + (7" ® ey), tem-se que

PF=P:OF +P.Q( ® )

Mas P: QF = PF" : QF ca conservagio do momento angular exige'® que PF'

= FP", 0 que implica em PF': (=0, pois ¢ anti-simétrico e o produto escalar de

tensor simétrico pelo anti-simétrico resuita em zero. Logo, pode-se escrever que

PF=P:Q(3"®e)=0"P: (' ® e))=0" uf(3" ® )P =

100



+ 0 e

que fornece

PF=1-3"=¢"(§'+&"xa")
Pode-se, agora, reescrever a equagdo da poténcia interna como

Pr= Ijrr-?’dAdC:J-(n“-rjrr-kmr-f{")dé'
I A4 i

onde

"
W= [t7dA = Vel +N el =| ¥,
A N o
M,
m' = IarxrrdA =Mye, +T e}= M,
A
T

et

Note que as forgas e 0s momentos que realmente atuam na se¢do sdo dados por

Vi
n= jr dA = Qn" = V,e, + Ne; = v,
.4 N

4
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M,

m= |axvdd =0m = Mye, + Te; = M,
A

T

e

E conveniente observar que 7, n, m, ¥, 17 ¢ k sio afetados por movimentos de
corpo rigido. Ja os vetores ndo possuem este problema e, por isso, sdo convenientes na
formulag¢io de equagdes constitutivas. Note também que um vetor (-)" tem, na base fixa,
as mesmas componentes que () tem na base mével.

Definindo o vetor dos esforgos generalizados de uma secdo como

a poténcia dos esforgos internos pode ser ¢xpressa por

Pi=[(a"&")dl =[o" - Bdd a;
! !

6.2.3.2 Poténcia dos Esforgos Externos

A poténcia dos esforgos externos é dada pela seguinte expressio
Pi= j[jf-édﬁjﬁ-&dAJdg +q - d
ILC A

onde £¢ vetor das forcas superficiais externas aplicadas na configuracéo atual ou

deformada por unidade de area da configuragdo de referéncia, & ¢é vetor das forcas
volumétricas externas aplicadas na configuragio atual ou deformada por unidade de

volume da configuragfio de referéncia ¢ g édado por
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) n n
q = N el
I''m H

sendo que #”, m" e i7" sdo, respectivamente, os vetores forcas, momentos e momentos
modificados aplicado nas extremidades da barra.

Utilizando a expressdo de,, d =it + wx a, tem-se que

Py=[(w-i+im-)dC = ([a-u+n-(06)|dc
! !

lembrando que os vetores de forgas ¢ momentos externos aplicados ao longo da barra

por unidade de comprimento de referéncia sio dados por

|

= jde+ jEdA
C A

m = Iaxde+ axb dd
¢ A

6.2.3.3 Equilibrio — Principio dos trabalhos Virtuais

Na formulacdo das equagdes de equilibrio sera utilizado o método variacional,
através do Principio dos Trabalhos Virtuais. VariagOes das deformages sio definidas
por linearizagio consistente das deformagdes e sio também chamadas de deformacdes

virtuais. Pode-se entfio escrever
S8 =BAM

O trabalho virtual dos esforcos internos de uma barra é dado pelas expressdes

abaixo
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sz(n'-aq"mf-a‘xf)dg“

!

W, = j(a’ B A Sd)dl
7

O trabalho virtual dos esforgos externos & entio definido por

oW = [[ft-ou+ 7 - (I 60)|dl +n'- u + '~ 50
{

W= [(g-od)dl
i

onde ¢ o vetor dos esforgos externos aplicados ao longo da barra definido por

a

O principio dos trabalhos virtuais nos diz que

oWy = 6Wg

ou, substituindo a expressdo de cada termo, tem-se

j[n-a‘u'+ m-(L30Y —(2'xn)-( 60)~1 - du—1 (T 30)|d¢ - n"- Su— 1’ 50 = 0
i

Efetuando a integragfio por partes nos termos com du’ e (I'o8) , chega-se a

[[- '+ @) - (' + 2 x 0+ 1) - (F 50)]dC +
i

t(n-n")-oul,+(I'm—pu')-60] =0
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Neste caso, surgerm os seguintes termos nos contornos

(n—n")-oul,=0

(Im—p')-001 =0

As condigBes de contorno naturais, nas quais os termos de contorno se anulam,
sdo dadas por

n(0)=n'(0) e n(l) =n"(l)
T'm(0)= 4 (0) e I m()=pu" ()

Esses termos também se anulam para as condigdes de contorno essenciais, dadas

por
w0y =u'(0) e u(l)=u'( 1)
A0)=6°(0) e &N =6"())
A anulacdo dos termos de contorno faz a equagdo dos trabalhos virtuais resultar
em

j[— (' +)ou —(m’ + 7' n + ) - (I'60)]d¢ = 0
!

Como os deslocamentos virtuais generalizados sfo arbitrarios, isto resulta nas

seguintes Equacgdes de Euler-Lagrange

onde ¢ € o vetor nulo.
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6.2.4 [ei Constitutiva

A formulagio da equagio constitutiva é analoga a que foi realizada para o caso
geometricamente linear, onde serd utilizada novamente uma relacdio elastica linear.
Porém as grandezas utilizadas nas teorias n3o-lineares geometricamente devem ser
necessariamente invariantes perante movimentos superpostos de corpo rigido. & e &
satisfazem esta condigio de invaridncia e portanto sfo aptos para serem usadas na

formulagio das equagdes constitutivas, cujas relagdes podem ser dadas por

o = D¢
onde

ey 0 0 0 0 Gt -8)]
0 GA 0 0 0 G(S5-5,)

P 0 0 EA ES, ES, 0

0 0 ES, EJ,, EJ, 0

0 0 ES, EJ, EJ,, 0
| G(ST-S,) G(S5-S,) 0 0 0 Gl |

¢ a matriz de rigidez constitutiva da barra no sistema local e S 3 ¢ o momento estatico

relativo ao centro de cisalhamento.
6.3 APLICACAO DO MEF
Neste item, as expressdes obtidas a partir do principio dos trabalhos virtuais
scrdo transformadas nas equagdes das forcas desbalanceadas e nas matrizes de rigidez,

através da interpolagdo dos deslocamentos generalizados a partir dos valores dos nés do

elemento.
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6.3.1 Elementos Isoparamétricos

Os deslocamentos generalizados das segdes transversais, d, podem ser

interpolados pelos valores dos deslocamentos nos nés do elemento pela relagio
d=Np

onde N = N({) é a matriz de interpolagio e P € o vetor dos deslocamentos nodais

generalizados do elemento de barra, dado por

2

onde p; representa os deslocamentos do né j

A matriz N, por sua vez, contem as fungdes de forma, no caso os polinémios de
Lagrange, dos elementos isoparamétricos que, para o caso de um elemento com dois nds

que sera utilizado, sdo dados por

[Te-¢)

bl
met

H(éﬂ _-é.’;)

bt
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As coordenadas & sdo normalizadas para o intervalo -1 a 1. Assim, tem-se que

n(g_é:b)
bl

_ __fT% o1 1.
ey b 20
i
[Te-¢)
N-zhi.—z—g:é_:ﬁl %(14_5)

[J-2) &6 =1

h=2
A matriz de interpolagfio V ¢ dada por

N=[N; N;j

onde

NIZNJIP , NQZNJIP

¢ I, ¢ uma matriz identidade 6x6.

A coordenada utilizada na barra, ¢, varia de 0 a /, o que fornece
¢ =La+e)
2
O Jacobiano de £ no caso geral, é dado por

J, =

R
L
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Deste modo, tem-se que

Deve-se observar que ao se utilizar elementos isoparamétricos lineares &
necessdrio efetuar integracio numérica em um ponto, para se evitar o efeito do

enrijecimento, que podera levar a resultados incorretos.

6.3.2 Formulagdo Matricial

Através da substituiciio dos deslocamentos generalizados pelas interpolagées dos

valores nodais nas expressdes do trabalho virtual, obtém-se

P-gp= 6" -(BAN &)~7 (Nep)ldg
i

onde P ¢ o vetor dos esforcos nodais do elemento. Considerando nulas as forgas de

volume ¢ de superficie, tem-se que

P = [0’ (BANG)]dL

onde P pode ser expresso por

P= [[(aN) B"¢"1a¢
!

6.3.2.1 Caso Linear

A matriz de rigidez, para o caso linear, pode ser obtida pela relagéio
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P=Kp
Como demonstrado anteriormente que
o=Dg e &=BANp
A matriz de rigidez pode ser expressa por

k= [l(4N) B'DBAN]d¢
i

6.3.2.2 Caso nio-linear

Ao considerar a ndo-linearidade geométrica, a matriz de rigidez sera funcdo dos
deslocamentos dos nés, ou seja, da configuracio deformada. Assim, utiliza-se a matriz

de rigidez tangente do elemento, definida por

opP

hr=22

op

onde P ¢ o vetor de forgas desbalanceadas. Diferenciando-se a expressdo de P, obtida

anteriormente, chega-se a matriz de rigidez tangente, dada pela soma
kr=ke+ ko -k
onde
k= [(4N) B"DBAN1d¢
i

ko= [[(ANY G(4N)dg
!

110



k= j[NTL Nld¢

6.4 ANALISE DE EXEMPLOS

Asstm como apresentado no caso da trelica, uma simulagiio numérica foi
realizada no programa de viga para comparagdo com a solugdo analitica

6.4.1 Exemplo 1

O exemplo foi realizado com o objetivo de verificar o correto funcionamento da

parte linear do programa. Utilizou-se uma viga em balango, com uma carga concentrada

na extremidade livre, £ = 2]0GPa, v= 0 » € segdo transversal retangular 0,02 x 0,05 m,
como mostra a Figura 52.
P l

1
0.5 o 0,02

0,05

FIGURA 52. VIGA EM BALANCO UTILIZADA PARA SIMULACAO NO PROGRAMA DE VIGA

O deslocamento da extremidade livre pode ser obtida através da equacdo da linha
elastica, que aplicada no ponto considerado resulta em

3
S Pl

3ET
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Aplicando um esforgo P = /680N, o deslocamento resulta em & = 0.0im.
Primeiramente, utilizaram-se apenas dois elementos finitos para representacao da viga.
O deslocamento obtido pode ser visto na Tabela 12. Em seguida, a malha foi construida
com dez clementos de viga, com o objetivo de confirmar a influéneia do nimero de
clementos com o resultado obtido, o qual deveria se aproximar do analitico com o

aumento do niimero de elementos. A configurago da viga & apresentada na Figura 53,

FIGURA 53. CONFIGURACAO INICIAL(TRA CEJADQ) E DEFORMADA DA VIGA REPRESENTADA
COM DEZ ELEMENTOS.

TABELA 12. COMPARACAQ DOS VALORES DOS DESLOCAMENTOS OBTIDOS. MEDIDAS EM MM

Prog. Viga Analitico
2 el. 10 el.
Deslocamento 9.383 9,983 10
Diferenca % 0,5 0,17
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7 CONCLUSOES

Este relatorio apresentou o desenvolvimento do estudo realizado em relacdo ao
comportamento de treligas e vigas espaciais sujeitas a deformagdes finitas. Aspectos
tedricos sobre trelicas, vigas e sobre o Método dos Elementos Finitos foram
apresentados. Desenvolveu-se também o Principio dos trabalhos virtuais, aplicado
primeiro a elementos de trelica e em seguida a elementos de viga,

A implementagio da treliga, em linguagem Fortran, foi descrita e apresentou-se a
listagem das principais rotinas do programa, o qual € capaz de resolver trelicas bi e
tridimensionais, com linearidade e nfo-linearidade geomeétrica e linearidade fisica por
partes. Uma descrigio do método iterativo de Newton-Raphson foi apresentada assim
como as condi¢des de convergéncia escolhidas. Por fim, exemplos foram testados,
analisados ¢, quando considerado adequado, foram comparados ora com resposta
analitica, ora com resultados obtidos através de um programa conceituade de elementos
finitos, de forma que os resultados foram avaliados como excelentes.

Os testes realizados indicaram, portanto, o correto funcionamento do programa
de analise de treligas desenvolvido neste projeto, tanto de forma qualitativa, quando do
inicio da etapa de simulagio dos exemplos, como de forma quantitativa, quando da
finalizagdo dos processamentos com a comparagdo com o programa de elementos
finitos, Abaqus. Em relagéio ao programa de vigas, um exemplo simples foi simulado e
comparado com a resposta analitica ¢, 0 que pode-se perceber ¢ que também este
programa funciona corretamente. A teoria apresentada, neste caso de viga, pode ainda
levar a implementacio numérica da ndo-linearidade geometrica de modo nio muito
complexo, visto que toda a formulacio foi desenvolvida.

Durante a analise dos exemplos, o pos-processamento criado, auxiliou de
maneira tinica o entendimento ¢ a critica sobre os resultados processados.

E interessante ressaltar a importincia de uma anélise ndo-linear na consideragio
de deformagdes finitas em estruturas, principalmente quando se tratam de grandes

deformagdes e/ou grandes deslocamentos.
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Uma analise adicional foi realizada, com o objetivo de avaliar, numericamente,
um método de discretizagio de s6lidos, como vigas, placas e tubos através de elementos
de trelica. Este método, chamado de Método dos Elementos Discretos, é interessante
para se estudar estruturas complexas a partir de elementos simples, como ¢ o caso do
clemento unidimensional de trelica. Os testes mostraram as respostas obtidas com a
discretizagdo estdo realmente préximas dos resultados provenientes dos sélidos

originais,
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Rotinas do Programa de Célculo de Trelicas

QUADRO 1: ROTINA PARA GERACAO AUTOMATICA DE NOS,

| 'Nodes automnatic generation
nunmnos2=0
do while {numnos2.1t.numnos)
read(1,*) ini,{coord(k,ini) k=1 ,ndim),inc1,igent
if{igenl.eq.0) nummos2=mumnos2+1
do while (inc1.ne.0)
read(1,*) ifin,(coord(k,ifin},k: I,ndimy},inc2,igen2
do j=1,ndim
coord_inc(j)-+(coord(j,ifin)-coord(j,ini)/((ifin-ini)/inc 1)
end do
do j=ini+inc1,ifin-inc1,inc1
do k=1,ndim
coord(k,j)=coord(k,j-inc1)+coord inc(k}
end do
end do
nngen=({ifin-ini)/inc1)-1
nummos2=numnos2-+nngen+2
if{inc2.ne.0) then
numnos2=pumnos2- 1
ini=ifin
incl=inc2
igenl=igen2
else
inc1=0
end if
end do
end do

QUADRO 2: ROTINA PARA GERACAO AUTOMATICA DE ELEMENTOS.

!—!Elements automatic generation

numel2=:0

do while (numel2.1t.numelem)
read(1,*) ini,nprop(ini),{incid(k,ini),k=1 .nne),(incrl(k),k=1,mne),inc1,ifin
if{incl.ne.0) then

do j=ini+incl,ifin,inc1




nprop(j)-nprop(ini)
end do
negen=(ifin-ini)/inc1
do k=1,nne
incid(k,iﬁn)=incid(k,ini)+inc1’1(k)*negen
end do
do j=ini+inc1,ifin-inc1,inc1
do k=1,nne
Incid(k,j)=incid(k.j-inc1)+incr1 (k)
end do
end do
numel2=numel2+negen+1
else
numel2=numel2+]
end if
end do

QUADRO 3: IMPLEMENTACAOQ DO CALCULO DA MATRIZ DE RIGIDEZ,

else if (icontrol.eq.2.or.icontrol.eq.3)then
stif=0,
react=0,
do i=1 numelem
selem=0.
iglg{1)=incid(1,i)*ndofn-2
iglg(2)=incid(1.i)*ndofn-1
iglg(3)=inctd(1,i}*ndofn
iglg($)=incid(2,i)*ndofin-2
iglg{5)=incid(2,i)*ndofn-1
iglg(6)=incid(2,i)*ndofn
x21(i}=coord(1,incid(2,i))-coord(1 Jncid(1,1))
yv21{i) ‘coord(2,incid(2,i))-coord(2,incid(1 A))
z21(i): ‘coord(3.incid(2,i))-coord(3,incid(1 A))
H{nltye.eq.1) then
21n(i)=x21(i)
y2In(i)=y21{i)
z21In(i)=z21(1)
else
x2In(i)=act_coord( l,incid(2,i)}-act coord(1,incid(1 i)
y21n(i)=act_ coord(Z,incid(z,i))-act_coord(z,incid( 1,i))




z21n(i)=act_coord(3,incid(2,i))-act coord(3,incid(1,1))
end if
alo=sqri(x21(I)**2+y21(Iy**2+2z21(i)**2)
Linear analysis
if(nltye.eq.1) then
cte=cprops(i, | Y*props(nprop(i),1)/alo**3
Geometrical non-linearity
elseif(nltye.eq.2) then
alnessqreo(x2 In(i)**2+y2 In(i)**2+22 In(i)**2)
alam=alo/aln
arn: =a1am**(2.*props(nprop(i),7))*props(nprop(i), 1
ctel=cprops(i, | )*arn
cte2=1./alo**3
f=sig(i)*arn
cte=cte2*alam**3*(cte1-(1.+2 *props(nprop(i), 7))*f)
end if
c(l)=-x21n(i)
c(2)=-y21n(i)
¢(3)=-z21n(i)
c(4y=x21n(i)
c{5)=y21n(i)
¢(6)=z21n(1i)
Stiffness matrix of the element (lincar part)
doj=1,6
do k=j,6
selem(j,k)=cte*c(j)*c(k)
end do
end do
Stiffness matrix of the element (nonlinear part)
if{nltye.eq.2) then
aux—f{/alo*atam
selem(1, [)=selem(1,1)+aux
selem(1.4)=selem( 1,4)-aux
selem(2,2)-selem(2,2 }+aux
selem(2,5)=selem(2,5)-aux
selem(3,3)=selem(3,3 +aux
selem(3,6)=selem(3,6)-aux
selem(4,4)=selem({4,4}+aux
selem(4,1)=selem(4, 1 )-aux

selem(5,5)=selem(5,5+aux




seleny3,2)=selem(5,2)-aux

selem(6,6)=selem(6,6)+aux

selem(6,3)=selem(6,3)-aux
end if

Symmetric part of "selem"

do j=1,5

do 1=j+1,6

selem(L,j)=selem(j,])

end do

end do

Global stiffness matrix
do j=1,ndofe
do I==1,ndofe
stif(iglg(f),iglg(l)): stif{iglg(),iglg(l))+selem(j,1)
end do
end do
end do

QUADRO 4: ROTINA DE INVERSAO DE MATRIZES.

subroutine sub_inva(a,n)
implicit double precision (a-h,0-z)

dimension a(n,n),u(n,n)

doi=1.n
doj=1n
u(i,j)}=0.d0
if{i.eqj) u(ij)=1.do
end do
end do
eps—1.d-20
doi=l,n
k=i
if(i-n) 21,7,21
21 if{a(i,i}-eps) 5,6,7
5 if{-a(i,i)-eps) 6,6,7
] k=k+1
do j=I,n
u(ij)=ulij)+ulk,j)




a(ij)=a(t,j)+a(k,j)
end do
goto 21
7 div=a(i,i)
do j=1,n
w{ij)=u(i,jy/div
a(L,j)=a(i,jydiv
end do
do mm=1,n
delt=a(mm,i)
if{dabs{delt)-eps) 15,15,16
16 if{mm-i} 10,15,10
10 do j=l,n
u{mmny,j }=u(mm,j}-u(i,j)*delt
a(mm,j}=a(mm,j}-a(i,j)*delt
end do
15 end do
end do
doi=1,n
doj=1n
a(ij)=u1,j)
end do
end do
return

end

QUADRO 5: IMPLEMENTAGAO DA INCLUSAO DAS CONDICOES DE CONTORNO NA MATRIZ

DE RIGIDEZ.

[do J=1,numvinc
igl(1)=novinc(j)*ndofn-2
igl{2)=novine(j)*ndofn-1
igl(3)=novine(j)*ndofn
dom=1,3
If (ivinc(m,novine(j}).eq.1) then
do i~1,ndofg
stif{i,igl(m))-0.d0
stif(igl(m),i)=0.d0
end do
stif{igl(m),igl(m))=1.d0




end if
end do
end do

QUADRO 6: IMPLEMENTAGAO DA LINEARIDADE FiSICA POR PARTES.

! Strain

alo=sqrt(x2 1{i)**2+y21(i)**2+221(i)**2)
iglg(1)=incid(!,i)*ndofn-2
iglg(2)=incid(1.i)*ndofn-1
iglg(3)=incid{1,i)*ndofn
iglg(4)=incid(2,i)*ndofn-2
iglg(5)=incid(2,i)*ndofn-1
iglg(6)=incid(2,iy*ndofn

u2l(i)=act_coord(1,incid(2,i))-coord( Lincid(2,i)}-(act_coord(1,incid(1 >i})-coord(1,incid(1,1)))
v21 (i):acl_coord(2,incid(2,i))-c00rd(2,incid(Z,i))~(act_coord(2,incid( L,i)}-coord(2,incid(1,i}))
w21(i}=act coord(3,incid(2,i))-coord(3,incid(Z,i))-(act_coord(3,incid( 1,1))-coord(3,incid( 1,1)))
aln=sqrt(x21n(i)**2+y2 In(i)**2+22 In(i)**2)

alam=alo/aln

eps(i)=(1./alo**2)* (21 (i*u2 1 () +y2 1(iy*v21(i)+22 1 (i) *w2 1(3))

! Rigidez atualization
if{abs(eps( i}).gt.cprops(i,2).and.cprops(i,3).It.npcurve*2+ 1 0) then
if(abs(eps(i)).It.props(nprop(i),cprops(i,3)+2}) then
cprops(i,1)=(props(nprop(i),cprops(i,3)+1 J-props(nprop(i),cprops(i,3)-1))/
. (props(nprop(i),cpmps(i,3)+2)-cprops(i,2))
cprops(i,2)=props(nprop(i),cprops(i,3)+2)
cprops(i,3)=cprops(i,3)+2
else
m=cprops(i,3)+2
do while (abs(eps(i)).gt.props(nprop(i),m).and.m.le.npcurve*2+10)
m-m-+2
end do
cprops(i,1)={props(nprop(i),m-1 )-props(nprop(i),m-3))/
- (props(nprop(i),m)-props(nprop(i).m-2))
cprops(i,2)=props(nprop(i),m)
cprops{i,3)}=m
end if
end if




QUADRO 7: IMPLEMENTACAO DO EQUILIBRIO DE FORCAS.

"I Stress
ifcprops(i.3).ge.12) then
aux1=props({nprop(i}),cprops(i,3)-3)
aux2=props{nprop(i),cprops(i,3)-2)
else
aux1=0.d0
aux2=:0.d0
end if
sig(i}-aux1+cprops(i,1)*(abs(eps(i))-aux2)
if (eps(i).it.0.) sig(i)-sig(i)
! Internal Force
f=sig(i)*props(nprop(i}, 1)
fint(1,iy=falo*(-x2 In(i))
fint(2,i)=f/alo*(-y21n{i))
fint(3,i)=f/alo*(-z2 In(i))
fint(4,i)=f/alo*(x2 In{i))
finmt(5,1)=ffalo*(y2 In(i))
fint(6,i)=falo*(z2 1n(i))
fintg(incid(1,i)*ndofn-2)=fintg(incid(1,i) *ndofn-2)+fint(1,i)
fintg(incid(1,i)*ndofn-1)=fintg(incid(1,i)*ndofn-1 )+ink(2,1)
fintg(incid(1,i)*ndofn)=fintg(incid(1 JAY*ndofn)+fint(3,i)
ﬁntg(incid(Z,i)*ndofn-Z):ﬁntg(incidQ,i)*ndoﬁ1—2)+ﬁnt(4,i)
fintg(incid(2,1)*ndofn-1)=fintg(incid(2.i)*ndofn-1 Hing(5,1)
ﬁntg(incid(Z,i)*ndofn)tﬁntg(incid@,i)*ndofn)+ﬁnt(6,i)
! Out of balance forces
fob=0.
do i=1,ndofg
fob(i)-+force(i)-fintg(i)
end do
do j=1,numvinc
igl{1)=novinc(jy*ndofn-2
igl(2)=novine(j Y*ndofn-1
igl(3)}=novinc(j)*ndofn
if (ivinc(1,novine(j)).eq.1) then
react(igi(1))=-fob(igl(1))
fob(igl(1))=0.
end if




if (tvine(2,novine(j)).eq.1) then
react(igl(2))=-fob(igi(2))
fob(igl(2))=0.

end if

if (ivine(3,novinc(j)).eq.1) then
react(igl(3))=-fob(igl(3))
fob(igl(3))=0.

End if

end do

QUADRO 8: ROTINA PARA DESENHO DA ESTRUTURA DEFORMADA

!Draw initial
glinestyle = #AAAA
call SETLINESTYLE(glinestyle)

gstcolor = SETCOLORRGB(#DFDFDF)

do i=1,numelem

gx=coord(1,incid(1,i))
gy=coord(2,incid(1,i))
call MOVETO_ W(gx, gy, gxy) 'ponto de inicio da linha
gx=coord(1,incid(2,1))
gy=coord(2,incid(2,1))
gline = LINETO_ W(gx, gy} final da linha
end do

Draw actual

glinestyle = #FFFF

call SETLINESTYLE(glinestyle)

gsteolor = SETCOLORRGB(#000000)

call sub_color(sig, gcolor)

do i=1,numelem
gx=act _coord(l,incid(1,i))
gy—act_coord(2,incid(1,i))
call MOVETO W(gx, gy, gxy) 'ponte de inicio da linha
gsteolor = SETCOLORRGB(geolor(i))
gx=act_coord(l,incid(2,i))
gy=act_coord(2,incid(2,1))




gline = LINETO W(gx, gy) !final da linha
end do
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Lista de variaveis do Programa de Calculo de Trelicas

(C#): vetor caracter de # posicdes

(#): matriz de dimensio # (# = 1: vetor, # = 2: matriz).

(D: variavel inteira

(R): variavel real

act_coord (2):

matriz de coordenadas atualizadas. acr _coord(! ,TS) = coord, atual x do

no 6
alam(R): /4 =L/,
aln (R): comprimento atual do elemento
alo (R): comprimento inicial do elemento
arn(R): Ay
coord (2): coordenadas dos nés. coord(!,6} = coordenada x do né 6

coord_inc (2):

incremento do valor das coordenadas dos nds na geracdo automatica

valor dos pardmetros da propriedade do elemento

cprops (2): cprops (i,j) = k, o parimetro j do elemento i tem valor k&
J=1234=E g, 10, 10

cte (R): E.A,/L” para o caso lincar e //La° para o caso nfo-linear

ctel(R): E. Ay A%

cte2(R): v’

Fdisp (1) deslocamento sofrido em cada iteragdo

deldisp (1): deslocamento sofrido devido ao incremento de carga

delu (1): vide deldisp

Eisp (1) deslocamentos totais dos nos

Espinc (1) incrementos a serem utilizados nos nés com deslocamento aplicado

du(1): vide ddisp o

element (C'7):

nome do tipo de elemento. trelica 2D (truss2d) ou 3D (truss3d)

eps(1):

1 valor da deformacio £ dos elemetos

Lf (R):

for¢a normal agindo no elemento




matriz local de forga interna do elemento. Jfint(ij), i = elemento

fint (2): J=1,2,3,4 =dit. x do né local /, dir. y dono local /, dir. x do nd local 2,
dir. y do no local 2
vetor global de forgas internas dos nés. fintg(j)

fintg (1): J=123.4, ... =dir. x do n6 global /, dir. y do né global 7, dir. x do né
global 2, dir. y do né global 2, ...

fob (1): vetor global de desequilibrio de forgas (F*'-F™)
vetor global forgas externas nos nés. force(j)

force (1): J=1,2,34, .. = dir. x do né global /, dir. y do né global /, dir. x do né
global 2, dir. y do né global 2, ....

forcel (R): valor do carregamento da direcdo x

force2 (R): valor do carregamento da diregio y

forceine (1):

incrementos a serem utilizados nos nés com carregamento aplicado

icontrol (I):

controle da fungfo a ser usada na rotina truss2d

ifin (I):

numero do n6 ou do elemento final da geragdio automatica

igenl/igen2 (I):

geragdo automatica. 0 =sem, 1 = com

posi¢do do vinculo na matriz global de rigidez

| igl(i) = .

igl (1): : . : : .
1= 1,2 = dir x do né local vinculado, dir y do né local vinculado
] = 1dem para n6 global
posi¢do do elemento na matriz global de rigidez
iglg(i) =],

iglg (1): 1=1,2,3,4 =dir x do né local 1, dir y do né local 1, dir x do né local 2,
j = idem para né global

_iiic_(l): contador do numero de incrementos

titer (1): contador do ntmero de iteragdes

incl (D): incremento automatico do nimero do nd ou elemento

inc2 ﬁ tncremento automatico do nimero do né

= ligagao entre elementos e nos.

ncid (2):
incid(i,j) = k, o elemento j contém né i = £,

merl (1) incremento de cada n6 na gerag3io automatica de elementos

ini (I):

namero do né ou do elemento inicial da geraciio automatica




ivine (2): vinculag&o dos nés. #vinc(7,3) = 1, nd 3 é vinculado na direcio x
kdisp (I): contador do numero de nés com deslocamento aplicado
kioad (I): contador do niimero de nds com carregamento aplicado

m (I): contador do niimero de dire¢des

n (I): vide ndofg

name (C50): nome do arquivo de entrada de dados

ncheck = 0, convergéncia — fim da iteracdo
ncheck (1): ncheck = 999, divergéncia
ncheck = 1, continua iteracio

;cm): ~ Tvide ncrc;fg

ndim (I): dimensao da estrutura

'ndofe (D): graus de liberdade de um elemento

ndofg (I): graus de liberdade da estrutura

ndofn (I): graus de liberdade de um né

negen (I): contador parcial do nimero de elementos

nfordis (D: ntmero de nds com carregamento fixo ou deslocamento aplicado
nltye (I): tipo de geometria aplicada. 1 = linear, 2 = n3o linear

nne (I): numero de nés de um elemento

nngen (I): niimero de nos gerados automaticamente

nodisp (1): nimeros dos nés com deslocamento aplicado

noforce (1): nimeros dos nés com carregamento aplicado

novine (1): numero do né vinculado

npecurve (I): numero de pontos da curva rensdo x deformacio

nprop (1): nimero da propriedade de cada elemento

numdisp (I): nimero de deslocamentos aplicados na estrutura

numel2 (I): contador do nimero de elementos

numelem (I): numero de elementos da estrutura

numforce (I): numero de carregamentos aplicados na estrutura

numine (I): numero de incrementos de carregamento ou deslocamento
 numnos (I): numero de nds da estrutura

numnos2 (I): contador do niimero de nds

numprop (1): ntmero de propriedades geométricas e dos materiais dos elementos




numsetel (I):

numero de elementos selecionados

numsetno (I):

namero de nds selecionados

numving (I):

numero de nds vinculados

pvalu (1): ratio anterior
valor de cada pardmetro das propriedades definidas
props (i,j) = k, o parametro j da propriedade i tem valor &
props (2): J=1,2,3,45 = drea inicial 0.0,0,0
J=067891011,12=E, v, p, 0y, &, O~ £dos pontos
ratio (R): resid / retot
rdis (1): vide ddisp
react (1): vetor global de rea¢des nds nds
resid (R): soma dos quadrados dos deslocamentos dos nés na iteracdo
soma dos quadrados dos deslocamentos dos nos em relagio a um
retot (R): )
incremento de carga
selem (2): matriz de rigidez tangente local
sig (1): tensdo normal agindo em cada elemento
stif (2): matriz de rigidez tangente global
strain (3): deformacio
stres (3): tensio
tdis (): vide deldisp
u(l): vide disp
u2l (1): diferenga na dire¢do x dos deslocamentos dos nos locais 7 ¢ 2
v21 (1) diferenca na dire¢fo y dos deslocamentos dos nés locais 7 ¢ 2
x21 (1) projecao inicial dos elementos na direcio x
x2In (1): projecdo atual dos elementos na direcdo x
y21 (1): proje¢do inicial dos elementos na diregdo y

y21ln (1):

| projecio atual dos elementos na diregiio y
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ARQUIVOS DE ENTRADA DO PROGRAMA DE CALCULO DE

TRELICAS

QUADRO 9: ARQUIVO DE ENTRADA — EXEMPLO 1 — DESLOCAMENTO APLICADO.

EXEMPLO SNAP
ELEMENT (NOME ELEMENTOQ, TIPO ANALISE)
TRUSS2D 2
DADOS DE ENTRADA (NOS,ELEM,NUMPROP,NUMVINC NUMNOSCARREG,NUMINC)
3,2,1,3,1,50
COORDENADAS DOS NOS (NUMNO,X.Y,Z,INCNO,0-NOGENER, 1 ‘GENER)
1 00 00 00
2 40 30 00
3 80 00 00
INCIDENCIA DAS BARRAS
(ELEMINI,MATPROP,NOIi,NOj,INC‘NOi,INCNOj,INCNUMELEM,ELEMFINAL)
111 2 1112
PROPRIEDADES(NUMPROP, THICKNESS .... // N.Ptos Curva, E,NU,RO,SIGY sigmal, espl,...,
sigma n, epsn )
1,.50,0,0,0.
0, 21000, .5, 0., 40.
VINCULACOES
1,11
2,0,1
3. L1
CARREGAMENTO
2,0.,-10

QUADRO-10. ARQUIVO DE ENTRADA — EXEMPLO 2 — CARGA APLICADA.

| EXEMPLO TRIPE
ELEMENT (NOME ELEMENTO, TIPO ANALISE)
TRUSS3D 2
DADOS DE ENTRADA (NOS,ELEM,NUMPROP.NUMVINC,NUMNOSCARREG,NUMINC)
4,3,1,3,1, 100
COORDENADAS DOS NOS (NUMNO,X,Y,Z,INCNO,0=NOGENER, | <GENER)
1 0.0 00 00 00
2 50 100 00 00




3 100 0.0 00 00
4 5.0 50 60 00
INCIDENCIA DAS BARRAS

I 1.1 40000
21 2 400 00
31 3 40000

sigma n, epsn )
1,.5,0,0,0,0.
1, 2.1E7, 0.33, 0., 2.5E4, 3,38E4, 0.01
VINCULACOES
L1, 1,1
2,1,1,1
31,11
CARREGAMENTO
u, 0., 0., -30000.

(ELEMINL,MATPROP,NOIi,NQj INCNOL,INCNOj,INCNUMELEM,ELEMFINAL)

PROPRIEDADES(NUMPROP, THICKNESS .... // N.Ptos Curva, E,NU,RO,SIGY sigmal, espl,...,

QUADRO-11. ARQUIVO DE ENTRADA - EXEMPLO 3 CARGA APLICADA.

| EXEMPLO VIGA

TRUSS2D 2

22,41,1,2, 1,100

1 0.0 0.0 21

21 100.0 0.0 00
2 00 10.0 21
22 100.0 10.0 00
INCIDENCIA DAS BARRAS

l 1 1.3 2 2 110
11 1 2 4 2 2 120
20011 2 2 2 131

32 i 22322 214

sigman, epsn )
1,18.,0.,0,0,0.
0,2.1E7,0., 0., 2.5E4

L o

PROPRIEDADES(NUMPROP, THICKNESS ...

ELEMENT (NOME ELEMENTO, TIPO ANALISE)

DADOS DE ENTRADA (NOS,ELEM,NUMPROP,NUMVINC,NUMNOSCARREG,NUMINC)

COORDENADAS DOS NOS (NUMNO,X,Y,INC NO,0=NOGENER,1=GENER)

(ELEMINI,MATPROP,NOIi,NOj,INC‘NOi,INCNOj,INCNUMELEM,ELEMFINAL)

N.Ptos Curva, E,.NU.RO.SIGY sigmal, espl,...,




VINCULACOES
1,11
2,1,1
CARREGAMENTO
22, 0., -4000000.

QUADRO-12. ARQUIVO DE ENTRADA — EXEMPLO 4 — CARGA APLICADA.

EXEMPLO PLACA
ELEMENT (NOME ELEMENTO, TIPO ANALISE)
TRUSS3D 2
DADOS DE ENTRADA (NOS,ELEM,NUMPROP,NUMVINC,NUMNOSCARREG,NT IMINC)
50,177,1, 10,1, 100
COORDENADAS DOS NOS (NUMNO,X, Y, INCNO,0-NOGENER, | ‘GENER)
1 00 00 00 11
5 500 00 0.0 00
6 00 00 100 11
10 500 0.0 100 00
11 0.0 00 200 11
15 50.0 0.0 200 00
16 0.0 0.0 300 11
20 500 0.0 30.0 00
21 0.0 00 400 11
25 50,0 0.0 400 00
26 00 30 00 11
30 500 3.0 00 00
31 0.0 30 100 11
35 50,0 3.0 100 00
36 00 30 200 11
40 500 3.0 200 00
41 0.0 3.0 300 11
45 500 3.0 300 00
46 0.0 3.0 400 11
50 500 3.0 400 00
INCIDENCIA DAS BARRAS
{ELEMINLMATPROP,NOIi,NOJLINCNOi, INCNOj INCNUMELEM,ELEMFINA L)
1 I 1.2 1114
5 1 26 27 1 1 1 8
9 1 12 1 1 1 13
14 1 22 1 1 117




18 1 6 7 11 1 21
22 1 31 32 1 1 1 25
26 I 631 1 1 1 30
31 1 731 1 11 34
35 11112 1 1 1 38
39 136 37 1 1 1 42
43 111 36 1 1 1 47
48 112 36 1 1 1 51
52 116 17 1 1 1 55
56 1 40 42 1 1 1 59
60 116 41 1 1 1 64
65 I 17 41 1 1 1 68
69 12122 1 1 172
73 T 46 47 1 1 1 76
77 1 21 46 1 1 1 81
82 12246 1 1 1 85
86 1 1 6 5 5 189
90 1 26 31 5 5 1 93
94 I 620 5 5 1 97
98 12 7 5 5 1101
102 T 27 32 5 5 1105
106 1 727 5 5 1109
110 1 3 8 5 5 1113
114 1 28 33 5 5 1117
118 1 828 5 5 1121
122 1 4 9 5 5 1125
126 129 34 5 5 1129
130 19290 5 5 1133
134 1 510 5 5 1137
138 1 30 35 5 5 1141

142 1 10 30 5 5 1 143

146 1 2 6 1 1 1149

150 127 31 1 1 1 153

154 1 711 t 1 1157

158 1323 1 1 116l

162 1 12 16 1 1 1165

166 1 37 41 1 1 1 169

170 117 21 1 1 1173

174 142 46 1 1 1177
PROPRIEDADES(NUMPROP, THICKNESS .... // N.Ptos Curva, E/NU,RO,SIGY sigmal, espl,...,




sigman, epsn )
[,.5,0,0,0.0.
0, 2.1E7, 0.33, 0., 2.5E4
VINCULACOES

21,1,1,1

22,1,1,1

23, 1, 1,1

24,1, 1,1

25,1,1,1

46,1, 1,1

47,1, 1,1

48,1, 1,1

49,1, 1,1

50,1,1,1
CARREGAMENTO
I30, 0., -2000000., 0.




